University of Florida/Eml4507/s13.team3.Guzy: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>JackBot
 
(No difference)

Latest revision as of 22:56, 11 September 2016

Problem 2.5: Finite Analysis Of A Spring System

File:Report2problem.JPG
Spring-mass-dashpot system[1]
File:FEAproblem2.png
Spring-mass-dashpot system[2]


The free body diagram is defined by the matrix

 EDU>> Edof=[1 1 2;2 2 3;3 2 3];

Next, create the load force matrix

 EDU>> f=[0 100 0];

Next each element stiffness matrix is created

 EDU>> K= [0 0 0;0 0 0;0 0 0];
 EDU>> k=1500;
 EDU>> ep1=k;
 EDU>> ep2=2*k;
 EDU>> Ke1=springle(ep1);
 EDU>> Ke2=springle(ep2);

Now we create the global stiffness matrix

 EDU>> K=assem(Edof(1,:),K,Ke2);
 EDU>> K=assem(Edof(2,:),K,Ke1);
 EDU>> K=assem(Edof(3,:),K,Ke2);

Boundary conditions are now applied

 EDU>> bc=[1 0; 3 0];
 EDU>> [a,r]=solveq(K,f,bc);

Displacements are found:

 EDU>> ed1=extract(Edof(1,:),a)
 ed1 =
     0      0.0133
 EDU>> ed2=extract(Edof(2,:),a)
 ed2 =
     0.0133      0 
 EDU>> ed3=extract(Edof(3,:),a)
 ed3 =
     0.0133      0 

Spring forces are evaluated

 EDU>> es1=spring1s(ep2,ed1)
 es1 =
     40
 EDU>> es2=spring1s(ep1,ed2)
 es2 =
    -20
 EDU>> es3=spring1s(ep2,ed3)
 es3 =
    -40

By hand:

f=kd
f=force
k=stiffness
d=displacement



In matrix form:


[f1xf2x]=[kkkk][d1xd2x]




First we create a matrix to show the systems Degree of Freedoms.


The first column represents each spring(#1,#2,#3). The second and third column represent the connectivity of each node.


DOF=[112223323]



The following is a matrix of the Force vector


F=[F1xF2xF3x]



Next we need each element stiffness matrix for every spring:

Element stiffness matrix for Spring #1:

k1=[3000300030003000]=[300030000300030000000]


Element stiffness matrix for Spring #2:

k2=[1500150015001500]=[000015001500015001500]


Element stiffness matrix for Spring #3:

k3=[3000300030003000]=[000030003000030003000]


To get the global stiffness matrix, we add up each element stiffness matrix:


K=[300030000300030000000]+[000015001500015001500]+[000030003000030003000]=[300030000300075004500045004500]


Plugging each matrix into Hooke's Law we obtain:


[300030000300075004500045004500][d1xd2xd3x]=[F1xF2xF3x]


Because node one and three are attached to the wall, their displacements are zero:

d1x=0
d3x=0

Now we solve the follwing equation:


[300030000300075004500045004500][0d2x0]=[F1xF2xF3x]


Solving the System we obtain the following equations:

3000*03000*d2x+0*d3x=F1x
3000*0+7500*d2x4500*d3x=F2x
0*04500*d2x+4500*d3x=F3x


Simplifying the above equations we obtain:

3000*d2x=F1x
7500*d2x4500*d3x=F2x
4500*d2x+4500*d3x=F3x


Solving we obtain:

F1x=40


Plugging this value in

403000=d2x=0.01333


Using substitution for the remaining values, we obtain magnitudes of:

d1x=0


d2x=0.01333


d3x=0


F1x=40


F2x=20


F3x=40

Template:CourseCat