Complex Analysis/Exercises/Sheet 5: Difference between revisions
Jump to navigation
Jump to search
imported>Eshaa2024 New resource with "== Exercise on Complex Analysis == ==== Problem (Integrals, 5 points) ==== Calculate the following integrals using the Cauchy integral formula: # <math>\int_{|z+1| = 1} \frac{dz}{(z+1)(z-1)^3}</math> # <math>\int_{|z|=2} \frac{\sin z}{z+i}\, dz</math> # <math>\int_{|z|=r} \frac{dz}{(z-a)^n(z-b)^m}</math> mit <math>|a| < r < |b|</math>, <math>n,m \ge 1</math>. ==== Problem (Cauchy, 10 points) ==== Let <math>S^1 := \{z \in \mathbf C: |z| = 1\}</math>. On <math>\mathbf C \s..." |
(No difference)
|
Latest revision as of 13:42, 14 January 2025
Exercise on Complex Analysis
Problem (Integrals, 5 points)
Calculate the following integrals using the Cauchy integral formula:
- mit , .
Problem (Cauchy, 10 points)
Let
. On
, consider the function
Determine . At which points of does have a limit?
Problem (More Integrals, 5 points)
Use the Cauchy integral formula to determine
Hint: Consider
on the unit circle.
Translation and Version Control
This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity:
- Source: Kurs:Funktionentheorie/Übungen/5._Zettel - URL:
https://de.wikiversity.org/wiki/Kurs:Funktionentheorie/Übungen/5._Zettel
- Date: 01/14/2024