Micromechanics of composites/Balance of angular momentum: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
(No difference)

Latest revision as of 18:00, 12 October 2018

Template:TOCright

Statement of the balance of angular momentum

The balance of angular momentum in an inertial frame can be expressed as:

Template:Center top
σ=σT
Template:Center bottom

Proof

We assume that there are no surface couples on Ω or body couples in Ω. Recall the general balance equation

ddt[Ωf(𝐱,t)dV]=Ωf(𝐱,t)[un(𝐱,t)𝐯(𝐱,t)𝐧(𝐱,t)]dA+Ωg(𝐱,t)dA+Ωh(𝐱,t)dV.

In this case, the physical quantity to be conserved the angular momentum density, i.e., f=𝐱×(ρ𝐯). The angular momentum source at the surface is then g=𝐱×𝐭 and the angular momentum source inside the body is h=𝐱×(ρ𝐛). The angular momentum and moments are calculated with respect to a fixed origin. Hence we have

ddt[Ω𝐱×(ρ𝐯)dV]=Ω[𝐱×(ρ𝐯)][un𝐯𝐧]dA+Ω𝐱×𝐭dA+Ω𝐱×(ρ𝐛)dV.

Assuming that Ω is a control volume, we have

Ω𝐱×[t(ρ𝐯)]dV=Ω[𝐱×(ρ𝐯)][𝐯𝐧]dA+Ω𝐱×𝐭dA+Ω𝐱×(ρ𝐛)dV.

Using the definition of a tensor product we can write

[𝐱×(ρ𝐯)][𝐯𝐧]=[[𝐱×(ρ𝐯)]𝐯]𝐧.

Also, 𝐭=σ𝐧. Therefore we have

Ω𝐱×[t(ρ𝐯)]dV=Ω[[𝐱×(ρ𝐯)]𝐯]𝐧dA+Ω𝐱×(σ𝐧)dA+Ω𝐱×(ρ𝐛)dV.

Using the divergence theorem, we get

Ω𝐱×[t(ρ𝐯)]dV=Ω[[𝐱×(ρ𝐯)]𝐯]dV+Ω𝐱×(σ𝐧)dA+Ω𝐱×(ρ𝐛)dV.

To convert the surface integral in the above equation into a volume integral, it is convenient to use index notation. Thus,

[Ω𝐱×(σ𝐧)dA]i=ΩeijkxjσklnldA=ΩAilnldA=Ω𝑨𝐧dA

where []i represents the i-th component of the vector. Using the divergence theorem

Ω𝑨𝐧dA=Ω𝑨dV=ΩAilxldV=Ωxl(eijkxjσkl)dV.

Differentiating,

Ω𝑨𝐧dA=Ω[eijkδjlσkl+eijkxjσklxl]dV=Ω[eijkσkj+eijkxjσklxl]dV=Ω[eijkσkj+eijkxj[σ]k]dV.

Expressed in direct tensor notation,

Ω𝑨𝐧dA=Ω[[:σT]i+[𝐱×(σ)]i]dV

where is the third-order permutation tensor. Therefore,

[Ω𝐱×(σ𝐧)dA]i==Ω[[:σT]i+[𝐱×(σ)]i]dV

or,

Ω𝐱×(σ𝐧)dA==Ω[:σT+𝐱×(σ)]dV.

The balance of angular momentum can then be written as

Ω𝐱×[t(ρ𝐯)]dV=Ω[[𝐱×(ρ𝐯)]𝐯]dV+Ω[:σT+𝐱×(σ)]dV+Ω𝐱×(ρ𝐛)dV.

Since Ω is an arbitrary volume, we have

𝐱×[t(ρ𝐯)]=[[𝐱×(ρ𝐯)]𝐯]+:σT+𝐱×(σ)+𝐱×(ρ𝐛)

or,

𝐱×[t(ρ𝐯)σρ𝐛]=[[𝐱×(ρ𝐯)]𝐯]+:σT.

Using the identity,

(𝐮𝐯)=(𝐯)𝐮+(𝐮)𝐯

we get

[[𝐱×(ρ𝐯)]𝐯]=(𝐯)[𝐱×(ρ𝐯)]+([𝐱×(ρ𝐯)])𝐯.

The second term on the right can be further simplified using index notation as follows.

[([𝐱×(ρ𝐯)])𝐯]i=[([ρ(𝐱×𝐯)])𝐯]i=xl(ρeijkxjvk)vl=eijk[ρxlxjvkvl+ρxjxlvkvl+ρxjvkxlvl]=(eijkxjvk)(ρxlvl)+ρ(eijkδjlvkvl)+eijkxj(ρvkxlvl)=[(𝐱×𝐯)(ρ𝐯)+ρ𝐯×𝐯+𝐱×(ρ𝐯𝐯)]i=[(𝐱×𝐯)(ρ𝐯)+𝐱×(ρ𝐯𝐯)]i.

Therefore we can write

[[𝐱×(ρ𝐯)]𝐯]=(ρ𝐯)(𝐱×𝐯)+(ρ𝐯)(𝐱×𝐯)+𝐱×(ρ𝐯𝐯)].

The balance of angular momentum then takes the form

𝐱×[t(ρ𝐯)σρ𝐛]=(ρ𝐯)(𝐱×𝐯)(ρ𝐯)(𝐱×𝐯)𝐱×(ρ𝐯𝐯)+:σT

or,

𝐱×[t(ρ𝐯)+ρ𝐯𝐯σρ𝐛]=(ρ𝐯)(𝐱×𝐯)(ρ𝐯)(𝐱×𝐯)+:σT

or,

𝐱×[ρ𝐯t+ρt𝐯+ρ𝐯𝐯σρ𝐛]=(ρ𝐯)(𝐱×𝐯)(ρ𝐯)(𝐱×𝐯)+:σT

The material time derivative of 𝐯 is defined as

𝐯˙=𝐯t+𝐯𝐯.

Therefore,

𝐱×[ρ𝐯˙σρ𝐛]=𝐱×ρt𝐯+(ρ𝐯)(𝐱×𝐯)(ρ𝐯)(𝐱×𝐯)+:σT.

Also, from the conservation of linear momentum

ρ𝐯˙σρ𝐛=0.

Hence,

0=𝐱×ρt𝐯+(ρ𝐯)(𝐱×𝐯)+(ρ𝐯)(𝐱×𝐯):σT=(ρt+ρ𝐯+ρ𝐯)(𝐱×𝐯):σT.

The material time derivative of ρ is defined as

ρ˙=ρt+ρ𝐯.

Hence,

(ρ˙+ρ𝐯)(𝐱×𝐯):σT=0.

From the balance of mass

ρ˙+ρ𝐯=0.

Therefore,

:σT=0.

In index notation,

eijkσkj=0.

Expanding out, we get

σ12σ21=0;σ23σ32=0;σ31σ13=0.

Hence,

σ=σT


Template:Subpage navbar