Nonlinear finite elements/Kinematics: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>DanCherek
 
(No difference)

Latest revision as of 22:23, 11 June 2021

Strain Measures in three dimensions

File:Motion3D.png
The motion of a body

Initial orthonormal basis:

(𝑬1,𝑬2,𝑬3)

Deformed orthonormal basis:

(𝐞1,𝐞2,𝐞3)

We assume that these coincide.

Motion

𝐱=φ(𝐗,t)=𝐱(𝐗,t)

Deformation Gradient

𝑭=φ𝐗=oφ=𝐱𝐗=Xφ

Effect of 𝑭:

d𝐱1=𝑭d𝐗1;d𝐱2=𝑭d𝐗2

Dyadic notation:

𝑭=FiJ𝐞i𝑬J

Index notation:

FiJ=xiXJ

The determinant of the deformation gradient is usually denoted by J and is a measure of the change in volume, i.e.,

J=det𝑭

Push Forward and Pull Back

Forward Map:

𝐱=φ(𝐗,t)

Forward deformation gradient:

𝑭=𝐱𝐗=oφ

Dyadic notation:

𝑭=i,J=13xiXJ𝐞i𝑬J

Effect of deformation gradient:

d𝐱=𝑭d𝐗=φ*[d𝐗]

Push Forward operation:

φ*[]
  • d𝐗 = material vector.
  • d𝐱 = spatial vector.

Inverse map:

𝐗=φ1(𝐱,t)

Inverse deformation gradient:

𝑭1=𝐗𝐱=φ1

Dyadic notation:

𝑭1=i,J=13XIxj𝑬I𝐞j

Effect of inverse deformation gradient:

d𝐗=𝑭1d𝐱=φ*[d𝐱]

Pull Back operation:

φ*[]
  • d𝐗 = material vector.
  • d𝐱 = spatial vector.
Example
File:PushPullExample.png
Push forward and pull back

Motion:

x1=14(18+4X1+6X2)x2=14(14+6X2)

Deformation Gradient:

Fij=xiXj𝐅=12[2303]

Inverse Deformation Gradient:

𝐅1=13[3302]

Push Forward:

φ*[𝑬1]=𝐅[10]=[10]φ*[𝑬2]=𝐅[01]=[1.51.5]

Pull Back:

φ*[𝐞1]=𝐅1[10]=[10]φ*[𝐞2]=𝐅1[01]=[12/3]

Cauchy-Green Deformation Tensors

Right Cauchy-Green Deformation Tensor

Recall:

d𝐱1=𝑭d𝐗1;d𝐱2=𝑭d𝐗2

Therefore,

d𝐱1d𝐱2=(𝑭d𝐗1)(𝑭d𝐗2)

Using index notation:

d𝐱1d𝐱2=(FijdXj1)(FikdXk2)=dXj1(FijFik)dXk2=d𝐗1(𝑭T𝑭)d𝐗2=d𝐗1𝑪d𝐗2

Right Cauchy-Green tensor:

𝑪=𝑭T𝑭

Left Cauchy-Green Deformation Tensor

Recall:

d𝐗1=𝑭1d𝐱1;d𝐗2=𝑭1d𝐱2

Therefore,

d𝐗1d𝐗2=(𝑭1d𝐱1)(𝑭1d𝐱2)

Using index notation:

d𝐗1d𝐗2=(Fij1dxj1)(Fik1dxk2)=dxj1(Fij1Fik1)dxk2=d𝐱1(𝑭T𝑭1)d𝐱2=d𝐱1(𝑭𝑭T)1d𝐱2=d𝐱1𝐛1d𝐱2

Left Cauchy-Green (Finger) tensor:

𝐛=𝑭𝑭T

Strain Measures

Green (Lagrangian) Strain

12(d𝐱1d𝐱2d𝐗1d𝐗2)=12d𝐗1(𝑪𝑰)d𝐗2=d𝐗1𝑬d𝐗2

Green strain tensor:

𝑬=12(𝑪𝑰)=12(𝑭T𝑭𝑰)=12[o𝐮+(o𝐮)T+o𝐮(𝒐𝐮)𝑻]

Index notation:

Eij=12(FkiFkjδij)=12(uiXj+ujXi+ukXiukXj)

Almansi (Eulerian) Strain

12(d𝐱1d𝐱2d𝐗1d𝐗2)=12d𝐱1(𝑰𝐛1)d𝐱2=d𝐱1𝐞d𝐱2

Almansi strain tensor:

𝐞=12(𝑰𝐛1)=12(𝑰𝑭T𝑭1)

Index notation:

eij=12(δijFki1Fkj1)

Push Forward and Pull Back

Recall:

d𝐱1𝐞d𝐱2=d𝐗1𝑬d𝐗2

Now,

d𝐱1𝐞d𝐱2=(𝑭d𝐗1)𝐞(𝑭d𝐗2)=d𝐗1(𝑭T𝐞𝑭)d𝐗2=d𝐗1𝑬d𝐗2

Therefore,

𝑬=𝑭T𝐞𝑭𝐞=𝑭T𝑬𝑭1

Push Forward:

𝐞=φ*[𝑬]=𝑭T𝑬𝑭1

Pull Back:

𝑬=φ*[𝐞]=𝑭T𝐞𝑭

Some useful results

Derivative of J with respect to the deformation gradient

We often need to compute the derivative of J=det𝑭 with respect to the deformation gradient 𝑭. From tensor calculus we have, for any second order tensor 𝑨

𝑨(det𝑨)=det𝑨𝑨T

Therefore,

Derivative of J with respect to the right Cauchy-Green deformation tensor

The derivative of J with respect to the right Cauchy-Green deformation tensor (𝑪) is also often encountered in continuum mechanics.

To calculate the derivative of J=det𝑭 with respect to 𝑪, we recall that (for any second order tensor 𝑻)

𝑪𝑭:𝑻=𝑭(𝑭T𝑭):𝑻=(𝖨T:𝑻)𝑭+𝑭T(𝖨:𝑻)=𝑻T𝑭+𝑭T𝑻

Also,

J𝑭:𝑻=J𝑪:(𝑪𝑭:𝑻)=J𝑪:(𝑻T𝑭+𝑭T𝑻)=[𝑭J𝑪]:𝑻+[𝑭(J𝑪)T]:𝑻

From the symmetry of 𝑪 we have

J𝑪=(J𝑪)T

Therefore, involving the arbitrariness of 𝑻, we have

J𝑭=2𝑭J𝑪

Hence,

J𝑪=12𝑭1J𝑭.

Also recall that

J𝑭=J𝑭T

Therefore,

Template:Center top

J𝑪=12J𝑭1𝑭T=J2𝑪1

Template:Center bottom

In index notation,

Derivative of the inverse of the right Cauchy-Green tensor

Another result that is often useful is that for the derivative of the inverse of the right Cauchy-Green tensor (𝑪).

Recall that, for a second order tensor 𝑨,

𝑨1𝑨:𝑻=𝑨1𝑻𝑨1

In index notation

Aij1AklTkl=BijklTkl=Aik1TklAlj1

or,

Aij1Akl=Bijkl=Aik1Alj1

Using this formula and noting that since 𝑪 is a symmetric second order tensor, the derivative of its inverse is a symmetric fourth order tensor we have

Template:Center top

CIJ1CKL=12(CIK1CJL1+CJK1CIL1)

Template:Center bottom

Template:Subpage navbar