Use Romberg Integration to compute R3,3 for the following integral ∫0π2cosxdx
Solution:
R1,1=π4[cos(0)+cos(π2)]
R1,1=π4
R2,1=(12)[R1,1+h1f(a+h2)]
R2,1=(12)[π4+π2cos(π4)] R2,1=1.178023457
R3,1=(12)[R2,1+h2(f(a+h3)+f(a+3h3))] R3,1=(12)[1.178023457+π4(cos(π8)+cos(3π8)] R3,1=1.374317658
R2,2=R2,1+R2,1−R1,14−1 R2,2=1.178023457+.39262529363 R2,2=1.308898555
R3,2=R3,1+R3,1−R2,14−1 R3,2=1.374317658+.1962942013 R3,2=1.439749058
R3,3=R3,2+R3,2−R2,216−1 R3,3=1.439749058+.130850503315 R3,3=1.448472425