Physics Formulae/Thermodynamics Formulae

From testwiki
Revision as of 16:59, 6 March 2023 by 2405:201:5805:1de8:557:480:a302:cd59 (talk) (I CORRECTED THE MATHEMATICAL EQUATION FOR FIST LAW OF THERMODYNAMICS....)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Lead Article: Tables of Physics Formulae


This article is a summary of the laws, principles, defining quantities, and useful formulae in the analysis of Thermodynamics.


Thermodynamics Laws

Zeroth Law of Thermodynamics (TA=TB)(TB=TC)TA=TC

(systems in thermal equilibrium)

First Law of Thermodynamics △Q = △U +△W


Internal energy increase ΔU>0, decrease ΔU<0

Heat energy transferred to system ΔQ>0, from system ΔQ<0

Work done transferred to system ΔW>0 by system ΔW<0

Second Law of Thermodynamics ΔS0
Third Law of Thermodynamics S=Sstructural+CT

Thermodynamic Quantities

Quantity (Common Name/s) (Common Symbol/s) Defining Equation SI Units Dimension
Number of Molecules N dimensionless dimensionless
Temperature T K [Θ]
Heat Energy Q J [M][L]2[T]-2
Latent Heat QL J [M][L]2[T]-2
Entropy S J K-1 [M][L]2[T]-2 [Θ]-1
Heat Capacity (isobaric) Cp Cp=QT J K -1 [M][L]2[T]-2 [Θ]-1
Specific Heat Capacity (isobaric) Cmp Cmp=2QmT J kg-1 K-1 [L]2[T]-2 [Θ]-1
Molar Specific Heat

Capacity (isobaric)

Cnp Cnp=2QnT J K -1 mol-1 [M][L]2[T]-2 [Θ]-1 [N]-1
Heat Capacity (isochoric) CV CV=QT J K -1 [M][L]2[T]-2 [Θ]-1
Specific Heat Capacity (isochoric) CmV CmV=2QmT J kg-1 K-1 [L]2[T]-2 [Θ]-1
Molar Specific Heat

Capacity (isochoric)

CnV CnV=2QnT J K -1 mol-1 [M][L]2[T]-2 [Θ]-1 [N]-1
Internal Energy

Sum of all total energies which

constitute the system

U U=iEi J [M][L]2[T]-2
Enthalpy H H=U+pV J [M][L]2[T]-2
Gibbs Free Energy ΔG ΔG=ΔHTΔS J [M][L]2[T]-2
Helmholtz Free Energy A,F A=UTS J [M][L]2[T]-2
Specific Latent Heat L L=Qm J kg-1 [L]2[T]-2
Ratio of Isobaric to

Isochoric Heat Capacity,

Adiabatic Index

γ γ=CpCV=cpcV=CmpCmV dimensionless dimensionless
Linear Coefficient of Thermal Expansion α Lt=αL K-1 [Θ]-1
Volume Coefficient of Thermal Expansion 3α Vt=3αV K-1 [Θ]-1
Temperature Gradient No standard symbol T K m-1 [Θ][L]-1
Thermal Conduction Rate/

Thermal Current

P P=Qt W = J s-1 [M] [L]2 [T]-2
Thermal Intensity I I=PA=2PAt W m-2 [M] [L]-1 [T]-2
Thermal Conductivity κ,K,λ λ=P𝐀T W m-1 K-1 [M] [L] [T]-2 [Θ]-1
Thermal Resistance R R=Δxλ m2 K W-1 [L] [T]2 [Θ]1 [M]-1
Emmisivity Coefficient ϵ Can only be found from experiment

0ϵ1

ϵ=0 for perfect reflector

ϵ=1 for perfect absorber

(true black body)

dimensionless dimensionless


Kinetic Theory

Ideal Gas Law pV=nRT

pV=kTN

p1V1n1T1=p2V2n2T2


p1V1N1T1=p2V2N2T2

Translational Energy Ek=f2kT
Internal Energy U=f2NkT


Thermal Transitions

Adiabatic ΔQ=0

ΔU=W

Work by an Expanding Gas Process

ΔW=V1V2pdV


Net Work Done in Cyclic Processes

ΔW=cyclepdV

Isobaric Transition ΔU=Q
Cyclic Process Q+W=0
Work, Isochoric W=0
work, Isobaric W=pΔV
Work, Isothermal W=kTNln(V2/V1)
Adiabatic Expansion p1V1γ=p2V2γ

T1V1γ1=T2V2γ1

Free Expansion ΔU=0


Statistical Physics

Below are useful results from the Maxell-Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity.


Degrees of Freedom f
Maxwell-Boltzmann Distribution,

Mean Speed

v=8kTπm
Maxwell-Boltzmann Distribution

Mode-Speed

vmode=kT2m
Root Mean Square Speed vrms=v2=kT3m
Mean Free Path xfree=v2πd2N?
Maxwell–Boltzmann Distribution P(v)=4π(m2πkT)3/2v2emv2/2kT
Multiplicity of Configurations W=N!n1!n2!
Microstate in one half of the box n1,n2
Boltzmann's Entropy Equation S=klnW
Irreversibility
Entropy S=kiPilnPi
Entropy Change ΔS=Q1Q2dQT

ΔS=kNlnV2V1+NCVlnT2T1

Entropic Force FS=TS


Thermal Transfer

Stefan-Boltzmann Law I=σϵT4
Net Intensity Emmision/Absorbtion I=σϵ(Texternal4Tsystem4)
Internal Energy of a Substance ΔU=NCVΔT
Work done by an Expanding Ideal Gas dW=pdV=NkdT
Meyer's Equation CpCV=nR


Thermal Efficiencies

Engine Efficiency ϵ=|W|/|QH|
Carnot Engine Efficiency ϵc=(|QH||QL|)/|QH|=(THTL)/TH
Refrigeration Performance K=|QL|/|W|
Carnot Refrigeration Performance KC=|QL|/(|QH||QL|)=TL/(THTL)

Template:CourseCat