University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg9

From testwiki
Revision as of 15:41, 29 December 2019 by imported>MaintenanceBot (MaintenanceBot moved page EGM6321.F10.TEAM1.WILKS/Mtg9 to University of Florida/Egm6321/F10.TEAM1.WILKS/Mtg9 without leaving a redirect: Moving under learning project)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 9: Thur, 10Sept09


c(x):=xb(s)ds=:b¯ (s)

Template:Font



Note: Symbol notations:

Δ  defined as equal by definition

Non-symmetric notation := means equal by definition as well, better notation than Δ 

Goal: Derive mathematical structure of a class of exact N1_ODEs

Exact L1_ODE_VC:

b¯ (x)y+[a(x)y+k]=0

Template:Font



Application: Just invent any a(x),b(x) 
Let a(x)=x4 

b(x)=x b¯ (x)=12x2 

k=10 

12x2y+[x4y+10]=0

Template:Font



HW: Show that Eq(3) L1_ODE_VC is "exact". See Note P.10-1

Question: How about N1_ODEs? Eq.(2)P.6-4

N1 means Nonlinear, 1st Order

My(x,y)=a(x)c(y)

Template:Font



Nx(x,y)=b(x)c(y) N(x,y)=(xb(s)ds)c(y)

Template:Font



Where xb(s)=b¯ (x) 

Eq.(2) P.6-4:

1N(NxMy)=1b¯ (x)c(y)[b(x)c(y)a(x)c(y)]=f(x) 


Eq.(4) P.9-2 M(x,y)=a(x)yc(s) 

Where yc(s)=c¯ (y) 

M(x,y)=a(x)c¯ (y)

Template:Font



From Eq.(6) P.9-3 , Eq.(4) P.9-2 and Eq.(3) P.4-2 obtain:

b¯ (x)c(y)y+a(x)c¯ (y)=0

Template:Font



Application: Consider the following

a(x)=5x3+2 

b(x)=x2 b¯ (x)=13x3 

c(y)=y4 c¯ (y)=15y5 

(13s3)(y4)y+(5x3+2)(15y5)=0

Template:Font



HW: Show Eq(8) is "exact" N1_ODE. Note P.10-1


L2_ODE_VC with missing dependant variable

P(x)y+Q(x)y+R(x)y=S(x) 

Where R(x) 0  due to missing dependant variable y.

Eq.(1)P.2-3 p:=y P(x)p+Q(x)p=S(x)  is a L1_ODE_VC

Solution: Eq.(4)P.8-2

Exact N2_ODEs:

General N2_ODEs: F(x,y,y,y)=0 

Application: (x3+2x5y2)y+(x32+10)yy+y100=0 

F=0  is exact means ϕ (x,y,y)  such that F(x,y,y,y)=ddxϕ (x,y,y) 

References


Template:CourseCat