University of Florida/Egm6321/f09.team1.gzc/Mtg8

From testwiki
Revision as of 18:16, 20 November 2023 by imported>ShakespeareFan00
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Font


page8-1

Template:FontTemplate:FontTemplate:Font



Pn(x)=i=0[n/2](1)i(2n2i)!xn2i2ni!(ni)!(n2i)!

(1)



[n/2]=integer part of n/2

(2)

e.g., m = 5 , n/2 = 2.5 , [2.5] = 2

(3) P0=1P0

(4) P1=xP1

(5) P2=12(3x21)P1

(6) P3=12(5x33x)P1

(7) P4=358x4154x2+38P1

Pn = set of poly. of degree  n


Template:FontTemplate:FontTemplate:Font

(5) P2=0x1,2=13 or+13


page8-2

Weights wi , i = 1,...,n (Template:FontTemplate:Font)

Template:Font

I(f)=In(f)+En(f) (1)

wi=2(n+1)Pn'(xi)Pn+1(xi) (2)

En(f)=22n+1(n)!4(2n+1)[(2n)!]2f(2n)(ξ)(2n)! (3)

ξ[1,1]



NOTE:_ En(f)=0 fP2n1 since f(2n)(x)=0 . Only need to use n int. pts {xi, i=1,...n} to int. exactly any poly in P2n1 i.e., of degree  2n1

Newtoncotes method: I(f)

History Newton cotes  Lecture plan suli+Meyers(2003)


page8-3

1) Approx. f(.) using Lagrange_ interp. funcs  fnL(x)


Int. exactly fnL(x)  I(fnL)

In(f) :=I(fnL)=fnL(x)dx (1)

fnL(x)=Pn(x)=i=0li,n(x)Lagrange interp. func f(xi) (2)


Template:FontTemplate:Font

File:Nm1.s11.Mtg8.pg3.fig1.svg

Template:CourseCat