University of Florida/Egm6321/f09.team1.gzc/Mtg10

From testwiki
Revision as of 20:18, 14 October 2023 by imported>ShakespeareFan00
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Font

page10-1

Template:FontTemplate:FontTemplate:FontTemplate:Font

Template:FontTemplate:FontTemplate:Font

Template:FontTemplate:FontTemplate:FontTemplate:Font

on  Template:Font. Plot the roots on [-1,+1] using

matlab "plot" command (plot dots "."

with coordinator (xi,yi), i = 1,...,5 : use "markersinge" 15)

xi:Template:Font

yi: Template:Font

Template:Font

Repeat the above for PTemplate:FontTemplate:Font

observe the location of the roots near end points -1 and +1

Template:Font

Template:FontTemplate:Font

Template:Font

 

page10-2

Template:Font

[a,b] x0=a, x1=a+b2, x2=b (1)

Method1:_ f2(x)=P2(x)=(2)c2x2+c1x+c0

c0,  c1,  c2   unknowns

p2=(xi) = f(xi)    i= 0, 1, 2               Template:Font

Template:Font}

Template:FontTemplate:FontTemplate:FontTemplate:Font

 

(4)=i=0n=2li,2(x)li(x)f(xi)

Equiv. of meth1 and meth 2:            Template:Font

 

p2(xj)=i=02li(xj)δijf(xi)=fxj (5)


page10-3

l0,2=l0,2=j=0jin=2xxjx0xj=(xx1)(xx2)(x0x1)(x0x2) P2

It can be verified that

l0(x0)=1 , l0(x1) = l0(x2) = 0

li(xj) = δij                  i,j = 0. 1. 2

File:Nm1.s11.Mtg10.pg3.fig1.svg

l1(i=1),2(n=2)(x)l1(x)=j=0,j12(n=2)xxjxi(i=1)xj=(xx0)(xx2)(x1x0)>0(x1x2)<0 P2

l1(x1)=1 , l1(x0)=l1(x2)=0


page10-4

File:Nm1.s11.Mtg10.pg4.fig2.svg l1'(x1)<0

Template:FontTemplate:Font

expression for {ci} in terms (xi, f(xi)) i=0,1,2.

Template:FontTemplate:Font

derive simple Simpson's rule

Template:FontTemplate:FontTemplate:FontTemplate:Font

Template:Font

Consider n=1Template:Font, 2Template:Font, 4, 8, 16

 

page10-5

Constrast fn(x) as in (2) p.8-3.

Plot f , fn , n= 1, 2, 4, 8, 16

Compare

In=abfn(x)dx

n=1, 2, 4, 8

and compare to I (use WA with more digits)

For n=5 plot l0, l1, l2 How would l3, l4, l5  look like?

Template:Fontshow

(1)p.73Simple Trap.(1)p.74Compare Trap.

(2)p.74Simple Trap.(4)p.74Compare Trap.

Template:CourseCat