University of Florida/Egm6321/f09.team1.gzc/Mtg10
Template:FontTemplate:FontTemplate:FontTemplate:Font
Template:FontTemplate:FontTemplate:Font
Template:FontTemplate:FontTemplate:FontTemplate:Font
on Template:Font. Plot the roots on [-1,+1] using
matlab "plot" command (plot dots "."
with coordinator (xi,yi), i = 1,...,5 : use "markersinge" 15)
yi: Template:Font
Repeat the above for PTemplate:FontTemplate:Font
observe the location of the roots near end points -1 and +1
c0, c1, c2 unknowns
p2=(xi) = f(xi) i= 0, 1, 2 Template:Font
Template:FontTemplate:FontTemplate:FontTemplate:Font
Equiv. of meth1 and meth 2: Template:Font
It can be verified that
l0(x0)=1 , l0(x1) = l0(x2) = 0
li(xj) = δij i,j = 0. 1. 2
File:Nm1.s11.Mtg10.pg3.fig1.svg
File:Nm1.s11.Mtg10.pg4.fig2.svg
expression for {ci} in terms (xi, f(xi)) i=0,1,2.
derive simple Simpson's rule
Template:FontTemplate:FontTemplate:FontTemplate:Font
Consider n=1Template:Font, 2Template:Font, 4, 8, 16
Constrast fn(x) as in (2) p.8-3.
Plot f , fn , n= 1, 2, 4, 8, 16
Compare
n=1, 2, 4, 8
and compare to I (use WA with more digits)
For n=5 plot l0, l1, l2 How would l3, l4, l5 look like?