Physics equations/01-Introduction/A:reviewCALCULUS

From testwiki
Revision as of 22:27, 11 September 2016 by imported>JackBot (Taylor series and Euler's equations<ref>[[w:Special:Permalink/706641490]]</ref>: using AWB)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Calculus[1]

If f and g are functions of x and a and b are constants, then:   ddxxn=nxn1. Template:Spaces

d(af+bg)dx=adfdx+bdgdx. Template:Spacesd(fg)dx=dfdxg+fdgdx. Template:Spaces


dhdx=dhdgdgdx. Template:Spaces(fg)=fggfg2.

If y=y(x) and x=x(y) are inverse functions then: dxdy=1dy/dx.

Indefinite integrals, where C is the arbitrary constant of integration:

xndx=xn+1n+1+C,(n1)
x1dx=ln|x|+C,

Exponential and trigonometric functions

If a is a constant, then: ddx(eax)=aeax. Template:Spacesddx(lnx)=1x,x0 Template:Spaces(lnf)=ff wherever f is positive.

(sinax)=acosx (arcsinx)=11x2
(cosax)=asinx (arccosx)=11x2
(tanx)=sec2x=1cos2x=1+tan2x (arctanx)=11+x2
(secx)=secxtanx (arcsecx)=1|x|x21
(cscx)=cscxcotx (arccscx)=1|x|x21
(cotx)=csc2x=1sin2x=(1+cot2x) (arccotx)=11+x2

Fundamental theorem of calculus

abdFdsds=dF=F|ab=F(b)F(a)
If F(x)=axf(s)ds,Template:Spaces  then dFdx=f(x)

Taylor series and Euler's equations[2]

ex=1+x+x22!+x33!+
sinx=xx33!+x55!x77!+
cosx=1x22!+x44!x66!+
eiθ=cosθ+isinθ

Template:Cot

Template:Reflist Template:Cob

Template:CourseCat