Coordinate systems/Derivation of formulas/Original Copy from Wikipedia

From testwiki
Revision as of 20:47, 19 April 2018 by imported>Dave Braunschweig (Special:LintErrors/stripped-tag)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Table from Wikipedia

Table with the del operator in cylindrical, spherical and parabolic cylindrical coordinates
Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, ϕ, z) Spherical coordinates (r, θ, ϕ) Parabolic cylindrical coordinates (σ, τ, z)
Definition
of
coordinates
ρ=x2+y2ϕ=arctan(y/x)z=z x=ρcosϕy=ρsinϕz=z x=rsinθcosϕy=rsinθsinϕz=rcosθ x=στy=12(τ2σ2)z=z
r=x2+y2+z2θ=arccos(z/r)ϕ=arctan(y/x) r=ρ2+z2θ=arctan(ρ/z)ϕ=ϕ ρ=rsinθϕ=ϕz=rcosθ ρcosϕ=στρsinϕ=12(τ2σ2)z=z
Definition
of
unit
vectors
ρ^=x𝐱^+y𝐲^x2+y2ϕ^=y𝐱^+x𝐲^x2+y2𝐳^=𝐳^ 𝐱^=cosϕρ^sinϕϕ^𝐲^=sinϕρ^+cosϕϕ^𝐳^=𝐳^ 𝐱^=sinθcosϕ𝒓^+cosθcosϕθ^sinϕϕ^𝐲^=sinθsinϕ𝒓^+cosθsinϕθ^+cosϕϕ^𝐳^=cosθ𝒓^sinθθ^ σ^=τ𝐱^σ𝐲^τ2+σ2τ^=σ𝐱^+τ𝐲^τ2+σ2𝐳^=𝐳^
𝐫^=x𝐱^+y𝐲^+z𝐳^x2+y2+z2θ^=xz𝐱^+yz𝐲^(x2+y2)𝐳^x2+y2x2+y2+z2ϕ^=y𝐱^+x𝐲^x2+y2 𝐫^=ρρ^+z𝐳^ρ2+z2θ^=zρ^ρ𝐳^ρ2+z2ϕ^=ϕ^ ρ^=sinθ𝐫^+cosθθ^ϕ^=ϕ^𝐳^=cosθ𝐫^sinθθ^
A vector field 𝐀 Ax𝐱^+Ay𝐲^+Az𝐳^ Aρρ^+Aϕϕ^+Az𝐳^ Ar𝒓^+Aθθ^+Aϕϕ^ Aσσ^+Aττ^+Aϕ𝐳^
Gradient f fx𝐱^+fy𝐲^+fz𝐳^ fρρ^+1ρfϕϕ^+fz𝐳^ fr𝒓^+1rfθθ^+1rsinθfϕϕ^ 1σ2+τ2fσσ^+1σ2+τ2fττ^+fz𝐳^
Divergence 𝐀 Axx+Ayy+Azz 1ρ(ρAρ)ρ+1ρAϕϕ+Azz 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAϕϕ 1σ2+τ2((σ2+τ2Aσ)σ+(σ2+τ2Aτ)τ)+Azz
Curl ×𝐀 (AzyAyz)𝐱^++(AxzAzx)𝐲^++(AyxAxy)𝐳^ (1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)𝐳^ 1rsinθ(θ(Aϕsinθ)Aθϕ)𝒓^+1r(1sinθArϕr(rAϕ))θ^+1r(r(rAθ)Arθ)ϕ^ (1σ2+τ2AzτAτz)σ^(1σ2+τ2AzσAσz)τ^+1σ2+τ2((σ2+τ2Aσ)τ(σ2+τ2Aτ)σ)𝐳^
Laplace operator Δf2f 2fx2+2fy2+2fz2 1ρρ(ρfρ)+1ρ22fϕ2+2fz2 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fϕ2 1σ2+τ2(2fσ2+2fτ2)+2fz2
Vector Laplacian Δ𝐀2𝐀 ΔAx𝐱^+ΔAy𝐲^+ΔAz𝐳^ Template:Hidden begin

(ΔAρAρρ22ρ2Aϕϕ)ρ^+(ΔAϕAϕρ2+2ρ2Aρϕ)ϕ^+ΔAz𝐳^ Template:Hidden end

Template:Hidden begin

(ΔAr2Arr22r2sinθ(Aθsinθ)θ2r2sinθAϕϕ)𝒓^+(ΔAθAθr2sin2θ+2r2Arθ2cosθr2sin2θAϕϕ)θ^+(ΔAϕAϕr2sin2θ+2r2sinθArϕ+2cosθr2sin2θAθϕ)ϕ^ Template:Hidden end

Material derivative[1]

(𝐀)𝐁

Template:Hidden begin

(AxBxx+AyBxy+AzBxz)𝐱^+(AxByx+AyByy+AzByz)𝐲^+(AxBzx+AyBzy+AzBzz)𝐳^ Template:Hidden end

Template:Hidden begin

(AρBρρ+AϕρBρϕ+AzBρzAϕBϕρ)ρ^+(AρBϕρ+AϕρBϕϕ+AzBϕz+AϕBρρ)ϕ^+(AρBzρ+AϕρBzϕ+AzBzz)𝐳^ Template:Hidden end

Template:Hidden begin

(ArBrr+AθrBrθ+AϕrsinθBrϕAθBθ+AϕBϕr)𝒓^+(ArBθr+AθrBθθ+AϕrsinθBθϕ+AθBrrAϕBϕcotθr)θ^+(ArBϕr+AθrBϕθ+AϕrsinθBϕϕ+AϕBrr+AϕBθcotθr)ϕ^ Template:Hidden end

Differential displacement d𝐥=dx𝐱^+dy𝐲^+dz𝐳^ d𝐥=dρρ^+ρdϕϕ^+dz𝐳^ d𝐥=dr𝐫^+rdθθ^+rsinθdϕϕ^ d𝐥=σ2+τ2dσσ^+σ2+τ2dττ^+dz𝐳^
Differential normal area d𝐒 dydz𝐱^+dxdz𝐲^+dxdy𝐳^ ρdϕdzρ^+dρdzϕ^+ρdρdϕ𝐳^ r2sinθdθdϕ𝐫^+rsinθdrdϕθ^+rdrdθϕ^ σ2+τ2dτdzσ^+σ2+τ2dσdzτ^+(σ2+τ2)dσdτ𝐳^
Differential volume dV dxdydz ρdρdϕdz r2sinθdrdθdϕ (σ2+τ2)dσdτdz
Non-trivial calculation rules:
  1. divgradff=2fΔf
  2. curlgradf×f=𝟎
  3. divcurl𝐀(×𝐀)=0
  4. curlcurl𝐀×(×𝐀)=(𝐀)2𝐀 (Lagrange's formula for del)
  5. Δ(fg)=fΔg+2fg+gΔf

Original Wikipedia Table

Template:Hidden begin

Table with the del operator in cylindrical, spherical and parabolic cylindrical coordinates
Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, ϕ, z) Spherical coordinates (r, θ, ϕ) Parabolic cylindrical coordinates (σ, τ, z)
Definition
of
coordinates
ρ=x2+y2ϕ=arctan(y/x)z=z x=ρcosϕy=ρsinϕz=z x=rsinθcosϕy=rsinθsinϕz=rcosθ x=στy=12(τ2σ2)z=z
r=x2+y2+z2θ=arccos(z/r)ϕ=arctan(y/x) r=ρ2+z2θ=arctan(ρ/z)ϕ=ϕ ρ=rsinθϕ=ϕz=rcosθ ρcosϕ=στρsinϕ=12(τ2σ2)z=z
Definition
of
unit
vectors
ρ^=x𝐱^+y𝐲^x2+y2ϕ^=y𝐱^+x𝐲^x2+y2𝐳^=𝐳^ 𝐱^=cosϕρ^sinϕϕ^𝐲^=sinϕρ^+cosϕϕ^𝐳^=𝐳^ 𝐱^=sinθcosϕ𝒓^+cosθcosϕθ^sinϕϕ^𝐲^=sinθsinϕ𝒓^+cosθsinϕθ^+cosϕϕ^𝐳^=cosθ𝒓^sinθθ^ σ^=τ𝐱^σ𝐲^τ2+σ2τ^=σ𝐱^+τ𝐲^τ2+σ2𝐳^=𝐳^
𝐫^=x𝐱^+y𝐲^+z𝐳^x2+y2+z2θ^=xz𝐱^+yz𝐲^(x2+y2)𝐳^x2+y2x2+y2+z2ϕ^=y𝐱^+x𝐲^x2+y2 𝐫^=ρρ^+z𝐳^ρ2+z2θ^=zρ^ρ𝐳^ρ2+z2ϕ^=ϕ^ ρ^=sinθ𝐫^+cosθθ^ϕ^=ϕ^𝐳^=cosθ𝐫^sinθθ^
A vector field 𝐀 Ax𝐱^+Ay𝐲^+Az𝐳^ Aρρ^+Aϕϕ^+Az𝐳^ Ar𝒓^+Aθθ^+Aϕϕ^ Aσσ^+Aττ^+Aϕ𝐳^
Gradient f fx𝐱^+fy𝐲^+fz𝐳^ fρρ^+1ρfϕϕ^+fz𝐳^ fr𝒓^+1rfθθ^+1rsinθfϕϕ^ 1σ2+τ2fσσ^+1σ2+τ2fττ^+fz𝐳^
Divergence 𝐀 Axx+Ayy+Azz 1ρ(ρAρ)ρ+1ρAϕϕ+Azz 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAϕϕ 1σ2+τ2((σ2+τ2Aσ)σ+(σ2+τ2Aτ)τ)+Azz
Curl ×𝐀 (AzyAyz)𝐱^++(AxzAzx)𝐲^++(AyxAxy)𝐳^ (1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)𝐳^ 1rsinθ(θ(Aϕsinθ)Aθϕ)𝒓^+1r(1sinθArϕr(rAϕ))θ^+1r(r(rAθ)Arθ)ϕ^ (1σ2+τ2AzτAτz)σ^(1σ2+τ2AzσAσz)τ^+1σ2+τ2((σ2+τ2Aσ)τ(σ2+τ2Aτ)σ)𝐳^
Laplace operator Δf2f 2fx2+2fy2+2fz2 1ρρ(ρfρ)+1ρ22fϕ2+2fz2 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fϕ2 1σ2+τ2(2fσ2+2fτ2)+2fz2
Vector Laplacian Δ𝐀2𝐀 ΔAx𝐱^+ΔAy𝐲^+ΔAz𝐳^ Template:Collapsible section Template:Collapsible section
Material derivative[1]

(𝐀)𝐁

Template:Collapsible section Template:Collapsible section Template:Collapsible section
Differential displacement d𝐥=dx𝐱^+dy𝐲^+dz𝐳^ d𝐥=dρρ^+ρdϕϕ^+dz𝐳^ d𝐥=dr𝐫^+rdθθ^+rsinθdϕϕ^ d𝐥=σ2+τ2dσσ^+σ2+τ2dττ^+dz𝐳^
Differential normal area d𝐒 dydz𝐱^+dxdz𝐲^+dxdy𝐳^ ρdϕdzρ^+dρdzϕ^+ρdρdϕ𝐳^ r2sinθdθdϕ𝐫^+rsinθdrdϕθ^+rdrdθϕ^ σ2+τ2dτdzσ^+σ2+τ2dσdzτ^+(σ2+τ2)dσdτ𝐳^
Differential volume dV dxdydz ρdρdϕdz r2sinθdrdθdϕ (σ2+τ2)dσdτdz
Non-trivial calculation rules:
  1. divgradff=2fΔf
  2. curlgradf×f=𝟎
  3. divcurl𝐀(×𝐀)=0
  4. curlcurl𝐀×(×𝐀)=(𝐀)2𝐀 (Lagrange's formula for del)
  5. Δ(fg)=fΔg+2fg+gΔf

Template:Hidden end

Template:CourseCat