Introduction to Calculus/Quiz 1/Answers

From testwiki
Revision as of 04:33, 29 May 2018 by imported>MaintenanceBot (Special:LintErrors/obsolete-tag)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

If you can pass this quiz, you are ready to take this course

  1. Evaluate tan(θ)  in terms of sin(θ) 
    tan(θ)=sin(θ)/(1(sin2(θ)) 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]])
  2. If csc(θ)=1/x,  then what does x  equal?
    x=sin(θ)  where x=[1,1] 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]])
  3. Prove tan2(θ)+1=sec2(θ) using  sin2(θ)+cos2(θ)=1
    sin2(θ)+cos2(θ)=1 
    divide both sides by cos2(θ)=>sin2(θ)/cos2(θ)+1=1/cos2(θ) 
    =>tan2(θ)+1=sec2(θ) 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]])
  4. cos(A+B)=cos(A)cos(B)sin(A)sin(B) 
    • Find the double angle idenities for the cosine function using the above rule.
      replace B  by A=>cos(A+A)=cos(A)cos(A)sin(A)sin(A) 
      =>cos(2A)=cos2(A)sin2(A) 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]])
    • Find the half angle idenities from the double angle idenities.
      =>cos(2A)=cos2(A)sin2(A) 
      replace A  by A/2=>cos(A)=2cos2(A/2)1  using sin2(A)+cos2(A)=1 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]])
    • Find the value of  cos2(θ) without exponents using the above rules
      =>cos(2θ)=2cos2(θ)1 
      =>cos2(θ)=(1+cos(2θ))/2 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]])
    • (Challenge) Find the value of  cos3(θ) without exponents
      cos(3θ)=cos(θ+2θ) 
      =>cos(3θ)=cos(θ)cos(2θ)sin(θ)sin(2θ) 
      =>cos(3θ)=cos(θ)(2cos2(θ)1)sin(θ)(2sin(θ)cos(θ))  using cos(2θ)=2cos2(θ)1  and sin(2θ)=2sin(θ)cos(θ) 
      =>cos(3θ)=cos(θ)((2cos2(θ)1)2sin2(θ)) 
      =>cos(3θ)=cos(θ)(4cos2(θ)3)  using  sin2(θ)+cos2(θ)=1
      =>4cos3(θ)=cos(3θ)+3cos(θ) 
      =>cos3(θ)=(cos(3θ)+3cos(θ))/4 
    [[User:Shyam| Template:Font]] ([[User talk:Shyam|Template:Font]]/[[Special:Contributions/Shyam|Template:Font]]) 19:42, 18 November 2006 (UTC)