PlanetPhysics/R Algebroid
R-algebroid
If is a [[../QuantumOperatorAlgebra5/|groupoid]] (for example, considered as a [[../Cod/|category]] with all [[../TrivialGroupoid/|morphisms]] invertible) then we can construct an -algebroid , as follows. The [[../TrivialGroupoid/|object]] set of is the same as that of and is the free -module on the set , with [[../Cod/|composition]] given by the usual bilinear rule, extending the composition of .
Alternatively, one can define to be the set of [[../Bijective/|functions]] Failed to parse (unknown function "\lra"): {\displaystyle \mathsf{G}(b,c)\lra R} with finite support, and then we define the \htmladdnormallink{convolution {http://planetphysics.us/encyclopedia/AssociatedGroupoidAlgebraRepresentations.html} product} as follows:
- As it is very well known, only the second construction is natural for the [[../CoIntersections/|topological]] case, when one needs to replace 'function' by 'continuous function with compact support' (or \emph{locally compact support} for the [[../HotFusion/|QFT]] extended symmetry sectors), and in this case ~. The point made here is that to carry out the usual construction and end up with only an algebra rather than an [[../Algebroids/|algebroid]], is a procedure analogous to replacing a groupoid by a [[../TrivialGroupoid/|semigroup]] in which the compositions not defined in are defined to be in . We argue that this construction removes the main advantage of groupoids, namely the spatial component given by the set of objects.
- More generally, an [[../RCategory/|R-category]] is similarly defined as an extension to this R- algebroid [[../PreciseIdea/|concept]].