PlanetPhysics/Thin Equivalence Relation
Thin equivalence relation
Let be paths in . Then is [[../ThinEquivalence/|thinly equivalent]] to , denoted , if there is a thin relative [[../ThinEquivalence/|homotopy]] between and .
We note that is an [[../GroupoidHomomorphism2/|equivalence relation]], see [1]. We use to denote the class of a path and call the {\it semitrack} of . The [[../GroupoidHomomorphism2/|groupoid]] structure of is induced by concatenation, +, of paths. Here one makes use of the fact that if </math> a: x \simeq x', \ a' : x' \simeq x, \ a : x \simeq x' Failed to parse (unknown function "\begin{matrix}"): {\displaystyle are paths then there are canonical thin relative homotopies <center><math> \begin{matrix}{r} (a+a') + a'' \simeq a+ (a' +a'') : x \simeq x''' \ ({\it rescale}) \\ a+e_{x'} \simeq a:x \simeq x' ; \ e_{x} + a \simeq a: x \simeq x' \ ({\it dilation}) \\ a+(-a) \simeq e_{x} : x \simeq x \ ({\it cancellation}). \end{matrix} }
The source and [[../SmallCategory/|target maps]] of are given by Failed to parse (unknown function "\enskip"): {\displaystyle \partial^{-}_{1} \langle a\rangle =x,\enskip \partial^{+}_{1} \langle a\rangle =y,} if is a semitrack. [[../Cod/|Identities]] and inverses are given by
All Sources
References
- ↑ 1.0 1.1 R. Brown, K.A. Hardie, K.H. Kamps and T. Porter, A homotopy double groupoid of a Hausdorff space, {\it Theory and Applications of Categories} 10 ,(2002): 71-93.
- ↑ K.A. Hardie, K.H. Kamps and R.W. Kieboom, A homotopy 2-groupoid of a Hausdorff space, Applied Cat. Structures , 8 (2000): 209-234.