PlanetPhysics/Differential Propositional Calculus Appendix 4

From testwiki
Revision as of 14:47, 20 October 2023 by imported>MathXplore (added Category:Propositional calculus using HotCat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Detail of Calculation for the Difference Map

\begin{tabular}{||c||c|c|c|c||}

\multicolumn{5}{Detail of Calculation for Failed to parse (syntax error): {\displaystyle \operatorname{D f = \operatorname{E}f + f} }} \Failed to parse (syntax error): {\displaystyle 6pt] \hline\hline & <math>\begin{matrix}{cr} & \operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y} \\ + & f|_{\operatorname{d}x\ \operatorname{d}y} \\ = & \operatorname{D}f|_{\operatorname{d}x\ \operatorname{d}y} \\ \end{matrix}<math> & <math>\begin{matrix}{cr} & \operatorname{E}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ + & f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ = & \operatorname{D}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ \end{matrix}<math> & <math>\begin{matrix}{cr} & \operatorname{E}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ + & f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ = & \operatorname{D}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ \end{matrix}<math> & <math>\begin{matrix}{cr} & \operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ + & f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ = & \operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ \end{matrix}} \Failed to parse (syntax error): {\displaystyle 6pt] \hline\hline <math>f_{0}} & 0+0=0 & 0+0=0 & 0+0=0 & 0+0=0 \Failed to parse (syntax error): {\displaystyle 6pt] \hline\hline <math>f_{1}} & </math>\begin{smallmatrix} & x\ y & \operatorname{d}x & \operatorname{d}y \\ + & (x)(y) & \operatorname{d}x & \operatorname{d}y \\ = & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & x\ (y) & \operatorname{d}x & (\operatorname{d}y) \\ + & (x) (y) & \operatorname{d}x & (\operatorname{d}y) \\ = & (y) & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x)\ y & (\operatorname{d}x) & \operatorname{d}y \\ + & (x) (y) & (\operatorname{d}x) & \operatorname{d}y \\ = & (x) & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x)(y) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (x)(y) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{2}} & x (y)dxdy+(x) ydxdy=(x,y)dxdy & x ydx(dy)+(x) ydx(dy)=ydx(dy) & (x)(y)(dx)dy+(x) y(dx)dy=(x)(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & (x)\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (x)\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline <math>f_{4}} & </math>\begin{smallmatrix} & (x)\ y & \operatorname{d}x & \operatorname{d}y \\ + & x\ (y) & \operatorname{d}x & \operatorname{d}y \\ = & (x, y) & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x) (y) & \operatorname{d}x & (\operatorname{d}y) \\ + & x\ (y) & \operatorname{d}x & (\operatorname{d}y) \\ = & (y) & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & x\ y & (\operatorname{d}x) & \operatorname{d}y \\ + & x\ (y) & (\operatorname{d}x) & \operatorname{d}y \\ = & x & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & x\ (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & x\ (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{8}} & (x)(y)dxdy+x ydxdy=((x,y))dxdy & (x) ydx(dy)+x ydx(dy)=ydx(dy) & x (y)(dx)dy+x y(dx)dy=x(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & x\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ + & x\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline\hline <math>f_{3}} & </math>\begin{smallmatrix} & x & \operatorname{d}x & \operatorname{d}y \\ + & (x) & \operatorname{d}x & \operatorname{d}y \\ = & 1 & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & x & \operatorname{d}x & (\operatorname{d}y) \\ + & (x) & \operatorname{d}x & (\operatorname{d}y) \\ = & 1 & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x) & (\operatorname{d}x) & \operatorname{d}y \\ + & (x) & (\operatorname{d}x) & \operatorname{d}y \\ = & 0 & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (x) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{12}} & (x)dxdy+xdxdy=1dxdy & (x)dx(dy)+xdx(dy)=1dx(dy) & x(dx)dy+x(dx)dy=0(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & x & (\operatorname{d}x) & (\operatorname{d}y) \\ + & x & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline\hline <math>f_{6}} & </math>\begin{smallmatrix} & (x, y) & \operatorname{d}x & \operatorname{d}y \\ + & (x, y) & \operatorname{d}x & \operatorname{d}y \\ = & 0 & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & ((x, y)) & \operatorname{d}x & (\operatorname{d}y) \\ + & (x, y) & \operatorname{d}x & (\operatorname{d}y) \\ = & 1 & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & ((x, y)) & (\operatorname{d}x) & \operatorname{d}y \\ + & (x, y) & (\operatorname{d}x) & \operatorname{d}y \\ = & 1 & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x, y) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (x, y) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{9}} & ((x,y))dxdy+((x,y))dxdy=0dxdy & (x,y)dx(dy)+((x,y))dx(dy)=1dx(dy) & (x,y)(dx)dy+((x,y))(dx)dy=1(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & ((x, y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & ((x, y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline\hline <math>f_{5}} & </math>\begin{smallmatrix} & y & \operatorname{d}x & \operatorname{d}y \\ + & (y) & \operatorname{d}x & \operatorname{d}y \\ = & 1 & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (y) & \operatorname{d}x & (\operatorname{d}y) \\ + & (y) & \operatorname{d}x & (\operatorname{d}y) \\ = & 0 & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & y & (\operatorname{d}x) & \operatorname{d}y \\ + & (y) & (\operatorname{d}x) & \operatorname{d}y \\ = & 1 & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{10}} & (y)dxdy+ydxdy=1dxdy & ydx(dy)+ydx(dy)=0dx(dy) & (y)(dx)dy+y(dx)dy=1(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & y & (\operatorname{d}x) & (\operatorname{d}y) \\ + & y & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline\hline <math>f_{7}} & </math>\begin{smallmatrix} & ((x)(y)) & \operatorname{d}x & \operatorname{d}y \\ + & (x\ y) & \operatorname{d}x & \operatorname{d}y \\ = & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & ((x)\ y) & \operatorname{d}x & (\operatorname{d}y) \\ + & (x\ y) & \operatorname{d}x & (\operatorname{d}y) \\ = & y & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x\ (y)) & (\operatorname{d}x) & \operatorname{d}y \\ + & (x\ y) & (\operatorname{d}x) & \operatorname{d}y \\ = & x & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (x\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{11}} & ((x) y)dxdy+(x (y))dxdy=(x,y)dxdy & ((x)(y))dx(dy)+(x (y))dx(dy)=(y)dx(dy) & (x y)(dx)dy+(x (y))(dx)dy=x(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & (x\ (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & (x\ (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline <math>f_{13}} & </math>\begin{smallmatrix} & (x\ (y)) & \operatorname{d}x & \operatorname{d}y \\ + & ((x)\ y) & \operatorname{d}x & \operatorname{d}y \\ = & (x, y) & \operatorname{d}x & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & (x\ y) & \operatorname{d}x & (\operatorname{d}y) \\ + & ((x)\ y) & \operatorname{d}x & (\operatorname{d}y) \\ = & y & \operatorname{d}x & (\operatorname{d}y) \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & ((x) (y)) & (\operatorname{d}x) & \operatorname{d}y \\ + & ((x)\ y) & (\operatorname{d}x) & \operatorname{d}y \\ = & (x) & (\operatorname{d}x) & \operatorname{d}y \\ \end{smallmatrix}Failed to parse (syntax error): {\displaystyle & } \begin{smallmatrix} & ((x)\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & ((x)\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}</math> \Failed to parse (syntax error): {\displaystyle 6pt] \hline <math>f_{14}} & (x y)dxdy+((x)(y))dxdy=((x,y))dxdy & (x (y))dx(dy)+((x)(y))dx(dy)=(y)dx(dy) & ((x) y)(dx)dy+((x)(y))(dx)dy=(x)(dx)dy & Failed to parse (syntax error): {\displaystyle \begin{smallmatrix} & ((x)(y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ + & ((x)(y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ \end{smallmatrix}<math> \<math>6pt] \hline\hline <math>f_{15}} & 1+1=0 & 1+1=0 & 1+1=0 & 1+1=0 \<math>6pt] \hline\hline

\end{tabular}

Template:CourseCat