PlanetPhysics/Differential Propositional Calculus Appendix 1

From testwiki
Revision as of 14:46, 20 October 2023 by imported>MathXplore (added Category:Propositional calculus using HotCat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Note. The following Tables are best viewed in the Page Image mode.

Table A1. Propositional Forms on Two Variables

Table A1 lists equivalent expressions for the [[../Predicate/|boolean functions]] of two variables in a number of different notational systems.

\begin{tabular}{|c|c|c|c|c|c|c|}

\multicolumn{7}{Table A1. Propositional Forms on Two Variables } \\ \hline 1 & 2 && 3 & 4 & 5 & 6 \\ \hline & & x= & 1 1 0 0 & & & \\ & & y= & 1 0 1 0 & & & \\ \hline f0 & f0000 && 0 0 0 0 & () & false & 0 \\ f1 & f0001 && 0 0 0 1 & (x)(y) & neither x nor y & ¬x¬y \\ f2 & f0010 && 0 0 1 0 & (x) y & y without x & ¬xy \\ f3 & f0011 && 0 0 1 1 & (x) & not x & ¬x \\ f4 & f0100 && 0 1 0 0 & x (y) & x without y & x¬y \\ f5 & f0101 && 0 1 0 1 & (y) & not y & ¬y \\ f6 & f0110 && 0 1 1 0 & (x, y) & x not~equal~to y & xy \\ f7 & f0111 && 0 1 1 1 & (x y) & not~both x and y & ¬x¬y \\ \hline f8 & f1000 && 1 0 0 0 & x y & x and y & xy \\ f9 & f1001 && 1 0 0 1 & ((x, y)) & x equal~to y & x=y \\ f10 & f1010 && 1 0 1 0 & y & y & y \\ f11 & f1011 && 1 0 1 1 & (x (y)) & not x without y & xy \\ f12 & f1100 && 1 1 0 0 & x & x & x \\ f13 & f1101 && 1 1 0 1 & ((x) y) & not y without x & xy \\ f14 & f1110 && 1 1 1 0 & ((x)(y)) & x or y & xy \\ f15 & f1111 && 1 1 1 1 & (()) & true & 1 \\ \hline

\end{tabular}

Table A2. Propositional Forms on Two Variables

Table A2 lists the sixteen Boolean functions of two variables in a different order, grouping them by structural similarity into seven natural classes.

\begin{tabular}{|c|c|c|c|c|c|c|}

\multicolumn{7}{Table A2. Propositional Forms on Two Variables } \\ \hline 1 & 2 && 3 & 4 & 5 & 6 \\ \hline & & x= & 1 1 0 0 & & & \\ & & y= & 1 0 1 0 & & & \\ \hline f0 & f0000 && 0 0 0 0 & () & false & 0 \\ \hline f1 & f0001 && 0 0 0 1 & (x)(y) & neither x nor y & ¬x¬y \\ f2 & f0010 && 0 0 1 0 & (x) y & y without x & ¬xy \\ f4 & f0100 && 0 1 0 0 & x (y) & x without y & x¬y \\ f8 & f1000 && 1 0 0 0 & x y & x and y & xy \\ \hline f3 & f0011 && 0 0 1 1 & (x) & not x & ¬x \\ f12 & f1100 && 1 1 0 0 & x & x & x \\ \hline f6 & f0110 && 0 1 1 0 & (x, y) & x not~equal~to y & xy \\ f9 & f1001 && 1 0 0 1 & ((x, y)) & x equal~to y & x=y \\ \hline f5 & f0101 && 0 1 0 1 & (y) & not y & ¬y \\ f10 & f1010 && 1 0 1 0 & y & y & y \\ \hline f7 & f0111 && 0 1 1 1 & (x y) & not~both x and y & ¬x¬y \\ f11 & f1011 && 1 0 1 1 & (x (y)) & not x without y & xy \\ f13 & f1101 && 1 1 0 1 & ((x) y) & not y without x & xy \\ f14 & f1110 && 1 1 1 0 & ((x)(y)) & x or y & xy \\ \hline f15 & f1111 && 1 1 1 1 & (()) & true & 1 \\ \hline

\end{tabular}

Table A3. Ef Expanded Over Differential Features {dx,dy}

\begin{tabular}{|c|c||c|c|c|c|}

\multicolumn{6}{Table A3. Ef Expanded Over Differential Features {dx,dy} \\ \hline & & T11 & T10 & T01 & T00 \\ & f & Ef|dx dy & Ef|dx(dy) & Ef|(dx)dy & Ef|(dx)(dy) \\ \hline f0 & () & () & () & () & () \\ \hline f1 & (x)(y) & x y & x (y) & (x) y & (x)(y) \\ f2 & (x) y & x (y) & x y & (x)(y) & (x) y \\ f4 & x (y) & (x) y & (x)(y) & x y & x (y) \\ f8 & x y & (x)(y) & (x) y & x (y) & x y \\ \hline f3 & (x) & x & x & (x) & (x) \\ f12 & x & (x) & (x) & x & x \\ \hline f6 & (x, y) & (x, y) & ((x, y)) & ((x, y)) & (x, y) \\ f9 & ((x, y)) & ((x, y)) & (x, y) & (x, y) & ((x, y)) \\ \hline f5 & (y) & y & (y) & y & (y) \\ f10 & y & (y) & y & (y) & y \\ \hline f7 & (x y) & ((x)(y)) & ((x) y) & (x (y)) & (x y) \\ f11 & (x (y)) & ((x) y) & ((x)(y)) & (x y) & (x (y)) \\ f13 & ((x) y) & (x (y)) & (x y) & ((x)(y)) & ((x) y) \\ f14 & ((x)(y)) & (x y) & (x (y)) & ((x) y) & ((x)(y)) \\ \hline f15 & (()) & (()) & (()) & (()) & (()) \\ \hline \multicolumn{2}{|c||}{Fixed Point Total:} & 4 & 4 & 4 & 16 \\ \hline

\end{tabular}

Table A4. Df Expanded Over Differential Features {dx,dy}

\begin{tabular}{|c|c||c|c|c|c|}

\multicolumn{6}{Table A4. Df Expanded Over Differential Features {dx,dy} \\ \hline & f & Df|dx dy & Df|dx(dy) & Df|(dx)dy & Df|(dx)(dy) \\ \hline f0 & () & () & () & () & () \\ \hline f1 & (x)(y) & ((x, y)) & (y) & (x) & () \\ f2 & (x) y & (x, y) & y & (x) & () \\ f4 & x (y) & (x, y) & (y) & x & () \\ f8 & x y & ((x, y)) & y & x & () \\ \hline f3 & (x) & (()) & (()) & () & () \\ f12 & x & (()) & (()) & () & () \\ \hline f6 & (x, y) & () & (()) & (()) & () \\ f9 & ((x, y)) & () & (()) & (()) & () \\ \hline f5 & (y) & (()) & () & (()) & () \\ f10 & y & (()) & () & (()) & () \\ \hline f7 & (x y) & ((x, y)) & y & x & () \\ f11 & (x (y)) & (x, y) & (y) & x & () \\ f13 & ((x) y) & (x, y) & y & (x) & () \\ f14 & ((x)(y)) & ((x, y)) & (y) & (x) & () \\ \hline f15 & (()) & () & () & () & () \\ \hline

\end{tabular}

Table A5. Ef Expanded Over Ordinary Features {x,y}

\begin{tabular}{|c|c||c|c|c|c|}

\multicolumn{6}{Table A5. Ef Expanded Over Ordinary Features {x,y} \\ \hline & f & Ef|x y & Ef|x(y) & Ef|(x)y & Ef|(x)(y) \\ \hline f0 & () & () & () & () & () \\ \hline f1 & (x)(y) & dx dy & dx (dy) & (dx) dy & (dx)(dy) \\ f2 & (x) y & dx (dy) & dx dy & (dx)(dy) & (dx) dy \\ f4 & x (y) & (dx) dy & (dx)(dy) & dx dy & dx (dy) \\ f8 & x y & (dx)(dy) & (dx) dy & dx (dy) & dx dy \\ \hline f3 & (x) & dx & dx & (dx) & (dx) \\ f12 & x & (dx) & (dx) & dx & dx \\ \hline f6 & (x, y) & (dx, dy) & ((dx, dy)) & ((dx, dy)) & (dx, dy) \\ f9 & ((x, y)) & ((dx, dy)) & (dx, dy) & (dx, dy) & ((dx, dy)) \\ \hline f5 & (y) & dy & (dy) & dy & (dy) \\ f10 & y & (dy) & dy & (dy) & dy \\ \hline f7 & (x y) & ((dx)(dy)) & ((dx) dy) & (dx (dy)) & (dx dy) \\ f11 & (x (y)) & ((dx) dy) & ((dx)(dy)) & (dx dy) & (dx (dy)) \\ f13 & ((x) y) & (dx (dy)) & (dx dy) & ((dx)(dy)) & ((dx) dy) \\ f14 & ((x)(y)) & (dx dy) & (dx (dy)) & ((dx) dy) & ((dx)(dy)) \\ \hline f15 & (()) & (()) & (()) & (()) & (()) \\ \hline

\end{tabular}

Table A6. Df Expanded Over Ordinary Features {x,y}

\begin{tabular}{|c|c||c|c|c|c|}

\multicolumn{6}{Table A6. Df Expanded Over Ordinary Features {x,y}} \\ \hline & f & Df|x y & Df|x(y) & Df|(x)y & Df|(x)(y) \\ \hline f0 & () & () & () & () & () \\ \hline f1 & (x)(y) & dx dy & dx (dy) & (dx) dy & ((dx)(dy)) \\ f2 & (x) y & dx (dy) & dx dy & ((dx)(dy)) & (dx) dy \\ f4 & x (y) & (dx) dy & ((dx)(dy)) & dx dy & dx (dy) \\ f8 & x y & ((dx)(dy)) & (dx) dy & dx (dy) & dx dy \\ \hline f3 & (x) & dx & dx & dx & dx \\ f12 & x & dx & dx & dx & dx \\ \hline f6 & (x, y) & (dx, dy) & (dx, dy) & (dx, dy) & (dx, dy) \\ f9 & ((x, y)) & (dx, dy) & (dx, dy) & (dx, dy) & (dx, dy) \\ \hline f5 & (y) & dy & dy & dy & dy \\ f10 & y & dy & dy & dy & dy \\ \hline f7 & (x y) & ((dx)(dy)) & (dx) dy & dx (dy) & dx dy \\ f11 & (x (y)) & (dx) dy & ((dx)(dy)) & dx dy & dx (dy) \\ f13 & ((x) y) & dx (dy) & dx dy & ((dx)(dy)) & (dx) dy \\ f14 & ((x)(y)) & dx dy & dx (dy) & (dx) dy & ((dx)(dy)) \\ \hline f15 & (()) & () & () & () & () \\ \hline

\end{tabular}

Template:CourseCat