PlanetPhysics/Examples of Lamellar Field

From testwiki
Revision as of 03:29, 13 September 2020 by imported>MaintenanceBot (Formatting)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In the examples that follow, show that the given [[../NeutrinoRestMass/|vector field]] U is lamellar everywhere in 3 and determine its [[../Vectors/|scalar]] potential u.\\

Example 1. \, Given

U:=yi+(x+sinz)j+ycoszk.

For the rotor ([[../Curl/|curl]]) of the field we obtain </math>\nabla\!\times\!\vec{U} = \left|\begin{matrix} \vec{i} & \vec{j} & \vec{k}\\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}}\\ y & x\!+\!\sin{z} & y\cos{z} \end{matrix}\right| \\= \left(\frac{\partial(y\cos{z})}{\partial{y}}-\frac{\partial(x\!+\!\sin{z})}{\partial{z}}\right)\vec{i} +\left(\frac{\partial{y}}{\partial{z}}-\frac{\partial(y\cos{z})}{\partial{x}}\right)\vec{j} +\left(\frac{\partial(x\!+\!\sin{z})}{\partial{x}}-\frac{\partial{y}}{\partial{y}}\right)\vec{k}Failed to parse (syntax error): {\displaystyle ,\\ which is identically <math>\vec{0}} for all x, y, z.\, Thus, by the definition given in the parent entry, U is lamellar.\\ Since \,u=U,\, the scalar potential \,u=u(x,y,z)\, must satisfy the conditions ux=y,uy=x+sinz,uz=ycosz. Thus we can write u=ydx=xy+C1, where C1 may depend on y or z. Differentiating this result with respect to y and comparing to the second condition, we get uy=x+C1y=x+sinz. Accordingly, C1=sinzdy=ysinz+C2, where C2 may depend on z.\, So u=xy+ysinz+C2. Differentiating this result with respect to z and comparing to the third condition yields uz=ycosz+C2z=ycosz. This means that C2 is an arbitrary constant. Thus the form u=xy+ysinz+C expresses the required potential [[../Bijective/|function]].\\

Example 2. \, This is a particular case in 2:

U(x,y,0):=ωyi+ωxj,ω=constant

Now,\; </math>\nabla\!\times\!\vec{U} = \left|\begin{matrix} \vec{i} & \vec{j} & \vec{k}\\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}}\\ \omega y & \omega x & 0 \end{matrix}\right| = \left(\frac{\partial(\omega x)}{\partial{x}}-\frac{\partial(\omega y)}{\partial{y}}\right)\vec{k}=\vec{0},andso\vec{U}islamellar.Thereforethereexistsapotentialfield<math>u with\, U=u.\, We deduce successively: ux=ωy;u(x,y,0)=ωxy+f(y);uy=ωx+f(y)ωx;f(y)=0;f(y)=C Thus we get the result u(x,y,0)=ωxy+C, which corresponds to a particular case in 2.\\

Example 3. \, Given

U:=axi+byj(a+b)z)k.

The rotor is now\, </math>\nabla\!\times\!\vec{U} = \left|\begin{matrix} \vec{i} & \vec{j} & \vec{k}\\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}}\\ ax & by & -(a+b)z \end{matrix}\right|= \vec{0}.From\nabla u=\vec{U}weobtain<math>ux=axu=ax22+f(y,z)(1) uy=byu=by22+g(z,x)(2) uz=(a+b)zu=(a+b)z22+h(x,y)(3) Differentiating (1) and (2) with respect to z and using (3) give (a+b)z=f(y,z)zf(y,z)=(a+b)z22+F(y)(1); (a+b)z=g(z,x)zg(z,x)=(a+b)z22+G(x)(2). We substitute (1) and (2) again into (1) and (2) and deduce as follows: u=ax22(a+b)z22+F(y);uy=F(y)=by;F(y)=by22+C1;f(y,z)=by22(a+b)z22+C1(1); u=by22(a+b)z22+G(x);ux=G(x)=ax;G(x)=ax22+C2;g(z,x)=ax22(a+b)z22+C2(2); putting (1), (2) into (1), (2) then gives us u=ax22+by22(a+b)z22+C1,u=ax22+by22(a+b)z22+C2, whence, by comparing,\, C1=C2=C,\, so that by (3), the expression h(x,y) and u itself have been found, that is, u=ax22+by22(a+b)z22+C.

Unlike Example 1, the last two examples are also [[../SolenoidalVectorField/|solenoidal]], i.e.\, U=0,\, which physically may be interpreted as the [[../ContinuityEquation/|continuity equation]] of an incompressible fluid flow.\\

Example 4. \, An additional example of a [[../LamellarField/|lamellar field]] would be U:=ayx2+y2i+axx2+y2j+v(z)k with a differentiable function \,v:;\, if v is a constant, then U is also solenoidal.

Template:CourseCat