PlanetPhysics/Using Convolution to Find Laplace Transforms
We start from the relations (see the [[../2DLT/|table of Laplace transforms]])
where the curved arrows point from the Laplace-transformed [[../Bijective/|functions]] to the original functions.\, Setting\, \, and dividing by in (1), the [[../688/|convolution property]] of [[../2DLT/|Laplace transform]] yields The substitution \,\, then gives
Thus we may write the [[../Formula/|formula]]
Moreover, we obtain whence we have the other formula
An improper integral
One can utilise the formula (3) for evaluating the improper integral We have (see the [[../TableOfLaplaceTransforms/|table of Laplace transforms]]).\, Dividing this by and integrating from 0 to , we can continue as follows:
Failed to parse (unknown function "\sijoitus"): {\displaystyle \begin{matrix} \int_0^\infty\frac{e^{-tx^2}}{a^2\!+\!x^2}\,dx & \;\curvearrowleft\; \int_0^\infty\frac{dx}{(a^2\!+\!x^2)(s\!+\!x^2)} \;=\; \frac{1}{s\!-\!a^2}\int_0^\infty\left(\frac{1}{a^2\!+\!x^2}-\frac{1}{s\!+\!x^2}\right)dx\\ & \;=\; \frac{1}{s\!-\!a^2}\sijoitus{x=0}{\quad\infty}\left(\frac{1}{a}\arctan\frac{x}{a}-\frac{1}{\sqrt{s}}\arctan\frac{x}{\sqrt{s}}\right)\\ & \;=\; \frac{1}{s\!-\!a^2}\!\cdot\!\frac{\pi}{2}\left(\frac{1}{a}-\frac{1}{\sqrt{s}}\right) \;=\; \frac{\pi}{2a}\!\cdot\!\frac{1}{(a\!+\!\sqrt{s})\sqrt{s}}\\ & \;\curvearrowright\; \frac{\pi}{2a}e^{a^2t}\,{\rm erfc}\,a\sqrt{t} \end{matrix}}
Consequently, and especially