PlanetPhysics/Using Convolution to Find Laplace Transforms

From testwiki
Revision as of 07:03, 23 October 2023 by imported>MathXplore (added Category:Laplace transforms using HotCat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

We start from the relations (see the [[../2DLT/|table of Laplace transforms]])

eαt1sα,1tπs(s>α)

where the curved arrows point from the Laplace-transformed [[../Bijective/|functions]] to the original functions.\, Setting\, α=a2\, and dividing by π in (1), the [[../688/|convolution property]] of [[../2DLT/|Laplace transform]] yields 1(sa2)sea2t*1πt=0tea2(tu)1πudu. The substitution \,a2u=x2\, then gives 1(sa2)sea2tpi0atex2ax2xa2dx=ea2ta2π0atex2dx=ea2taerfat.

Thus we may write the [[../Formula/|formula]]

{ea2terfat}=a(sa2)s(s>a2).

Moreover, we obtain 1(s+a)s=sa(sa2)s=1sa2a(sa2)sea2tea2terfat=ea2t(1erfat), whence we have the other formula

{ea2terfcat}=1(a+s)s.

An improper integral

One can utilise the formula (3) for evaluating the improper integral 0ex2a2+x2dx. We have etx21s+x2 (see the [[../TableOfLaplaceTransforms/|table of Laplace transforms]]).\, Dividing this by a2+x2 and integrating from 0 to , we can continue as follows:

Failed to parse (unknown function "\sijoitus"): {\displaystyle \begin{matrix} \int_0^\infty\frac{e^{-tx^2}}{a^2\!+\!x^2}\,dx & \;\curvearrowleft\; \int_0^\infty\frac{dx}{(a^2\!+\!x^2)(s\!+\!x^2)} \;=\; \frac{1}{s\!-\!a^2}\int_0^\infty\left(\frac{1}{a^2\!+\!x^2}-\frac{1}{s\!+\!x^2}\right)dx\\ & \;=\; \frac{1}{s\!-\!a^2}\sijoitus{x=0}{\quad\infty}\left(\frac{1}{a}\arctan\frac{x}{a}-\frac{1}{\sqrt{s}}\arctan\frac{x}{\sqrt{s}}\right)\\ & \;=\; \frac{1}{s\!-\!a^2}\!\cdot\!\frac{\pi}{2}\left(\frac{1}{a}-\frac{1}{\sqrt{s}}\right) \;=\; \frac{\pi}{2a}\!\cdot\!\frac{1}{(a\!+\!\sqrt{s})\sqrt{s}}\\ & \;\curvearrowright\; \frac{\pi}{2a}e^{a^2t}\,{\rm erfc}\,a\sqrt{t} \end{matrix}}

Consequently, 0etx2a2+x2dx=π2aea2terfcat, and especially 0ex2a2+x2dx=π2aea2erfca.

Template:CourseCat