Sqrt Planck momentum

From testwiki
Revision as of 19:55, 17 June 2022 by imported>Platos Cave (physics) (External links)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The sqrt of Planck momentum

The sqrt of Planck momentum can potentially be used to link the mass constants and the charge constants [1] and so can be used to reduce the required number of SI units, this permits the least accurate physical constants, (G, h, e, me, kB ...) to be defined and solved using the 4 most precise constants (c, μ0, R, α). The electron is reduced to a construct of magnetic monopoles. In more general terms the sqrt of momentum is used to reference the dimensionless mathematical electron [2], a simulation hypothesis model.

As it has no assigned SI unit, it is denoted here as Q with units q whereby Planck momentum = 2 π Q2, unit = kg.m/s = q2. It can be argued that Q qualifies as an independent Planck unit.

Q=1.019113411...unit=q


Mass constants

Replacing m with q

unitm=q2skg


Speed of light :c,unit=q2kg

Planck mass :mP=2πQ2c,unit=kg

Planck energy :Ep=mPc2=2πQ2c,units=kg.m2s2=q4kg

Planck length :lp,unit=q2skg

Planck time :tp=2lpc,unit=s

Planck force :Fp=2πQ2tp,units=q2s


Charge constants

Assigning a Planck ampere

AQ=8c3αQ3,unitA=m3q3s3=q3kg3

gives;

elementary charge :e=AQtp=8c3αQ3.2lpc=16lpc2αQ3,units=A.s=q3skg3

Planck temperature :Tp=AQcπ=8c3αQ3.cπ=8c4παQ3,units=q5kg4

Boltzmann constant :kB=EpTp=π2αQ54c3,units=kg3q

Magnetic field :B=mPc2eα2lp=πQ516αlp2c2

Vacuum permittivity :ϵ0=1μ0c2=32lpc3π2αQ8

Coulomb's constant :ke=14πϵ0=παQ8128lpc3


The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to exactly 2.10^{-7} newton per meter of length.

FelectricAQ2=Fpα.1AQ2=2πQ2αtp.(αQ38c3)2=παQ864lpc5=2107

Vacuum permeability :μ0=π2αQ832lpc5=4π107,units=kg.ms2A2=kg6q4s

Rewriting Planck length lp in terms of Q, c, α, μ0;

lp=π2αQ832μ0c5,unit=q2skg=m


Magnetic monopole

A magnetic monopole is a hypothesized particle that is a magnet with only 1 pole. The unit for the magnetic monopole is the ampere-meter, the SI unit for pole strength (the product of charge and velocity) in a magnet (A m = e c). A proposed formula for a magnetic monopole σe;

σe=3α2ec2π2=0.13708563x106,units=q5skg4


Dimensionless electron formula

The formula for an electron in terms of magnetic monopoles and Planck time

fe=σe3tp=2833α3lp2c10π6Q9=33α5Q74π2μ02,units=q15s2kg12


The Rydberg constant RTemplate:Math, unit = 1/m (see Electron mass).

R=mee4μ02c38h3=25c5μ0333πα8Q15,units=1m=kg13q17s3

This however now gives us 2 solutions for length m, if we conjecture that they are both valid then there must be a ratio whereby the units q, s, kg overlap and cancel;

m=q2skg.q15s2kg12=q17s3kg13;thusq15s2kg12=1
fe=σe3tp,units=1

and so we can further reduce the number of units required, for example we can define s in terms of kg, q;

s=kg6q15/2
μ0=kg6q4s=q7/2

Replacing q with the more familiar m gives this ratio;

q2=kg.ms;q30=(kg.ms)15=kg24s4
units=kg9s11m15=1

Electron mass as frequency of Planck mass:

me=mPfe,unit=kg

Electron wavelength via Planck length:

λe=2πlpfe,units=m=q2skg

Gravitation coupling constant:

αG=(memP)2=1fe2,units=1


Q15

The Rydberg constant RTemplate:Math = 10973731.568508(65) has been measured to a 12 digit precision. The known precision of Planck momentum and so Q is low, however with the solution for the Rydberg we may re-write Q as Q15 in terms of the 4 most precise constants; c (exact), μ0 (CODATA 2014 exact), R (12 digits), α (11 digits);

Q15=25c5μ0333πα8R,units=kg12s2=q15

From the above formula for Q15, the least accurate dimension-ed constants can now be defined in terms of c, μ0, R, α. The constants are first arranged until they include a Q15 term which can then be replaced by the above formula. Setting unit X as;

unitsX=kg9s11m15=kg12q15s2=1
e=16lpc2αQ3=π2Q52μ0c3,units=q3skg3
e3=π6Q158μ03c9=4π533c4α8R,units=kg3sq6=(q3skg3)3.X
h=2πQ22πlp=4π4αQ108μ0c5,units=q4skg
h3=(4π4αQ108μ0c5)3=2π10μ0336c5α13R2,units=kg21q18s=(q4skg)3.X2
kB=π2αQ54c3,units=kg3q
kB3=π5μ03332c4α5R,units=kg21q18s2=(kg3q)3.X
G=c2lpmP=παQ664μ0c2,units=q6skg4
G5=π3μ022036α11R2,units=kg4s=(q6skg4)5.X2
lp15=π22μ09235324c35α49R8,units=kg81q90s=(q2skg)15.X8
mP15=225π13μ0636c5α16R2,units=kg15=kg39q30s4.1X2
me3=16π10Rμ0336c8α7,units=kg3=kg27q30s4.1X2
AQ5=210π33c10α3Rμ03,units=q30s2kg27=(q3kg3)5.1X

There is a solution for an r2 = q, it is the radiation density constant from the Stefan Boltzmann constant σ;

σ=2π5kB415h3c2,rd=4σc,units=r
rd3=334π5μ03α19R253c10,units=kg30q36s5.1X2=kg6q6s=r3


Physical constants; calculated vs experimental (CODATA)
Constant Calculated from (R*, c, μ0, α*) CODATA 2014 [3]
Speed of light c* = 299 792 458, units = u17 c = 299 792 458 (exact)
Fine structure constant α* = 137.035 999 139 (mean) α = 137.035 999 139(31)
Rydberg constant R* = 10 973 731.568 508, units = u13 (mean) R = 10 973 731.568 508(65)
Vacuum permeability μ0* = 4π/10^7, units = u56 μ0 = 4π/10^7 (exact)
Planck constant h* = 6.626 069 134 e-34, units = u19 h = 6.626 070 040(81) e-34
Gravitational constant G* = 6.672 497 192 29 e11, units = u6 G = 6.674 08(31) e-11
Elementary charge e* = 1.602 176 511 30 e-19, units = u-19 e = 1.602 176 620 8(98) e-19
Boltzmann constant kB* = 1.379 510 147 52 e-23, units = u29 kB = 1.380 648 52(79) e-23
Electron mass me* = 9.109 382 312 56 e-31, units = u15 me = 9.109 383 56(11) e-31
Classical electron radius λe* = 2.426 310 2366 e-12, units = u-13 λe = 2.426 310 236 7(11) e-12
Planck mass mP* = .217 672 817 580 e-7, units = u15 mP = .217 647 0(51) e-7
Planck length lp* = .161 603 660 096 e-34, units = u-13 lp = .161 622 9(38) e-34
Von Klitzing constant RK* = 25812.807 455 59, units = u73 RK = 25812.807 455 5(59)
Gyromagnetic ratio γe/2π* = 28024.953 55, units = u-42 γe/2π = 28024.951 64(17)


Fine structure constant alpha

α=2hμ0e2c=22πQ22πlp32lpc5π2αQ8α2Q6256lp2c41c=α,units=q4skgq4skg6kg6q6s2kgq2=1


Mathematical electron

Template:Main Template:Main Q is used in the context of SI units and so is related to the SI Planck momentum. The mathematical electron model uses geometrical objects for the Planck units and defines P as the sqrt of momentum with the unit u16. Although different sets of geometrical objects may be used in the mathematical electron model, so far only the following set can also translate to the Q related formulas and so Q places a limit on this model.

Geometrical units
Designation Geometrical object Unit
mass M=1 unit=u15
time T=2π unit=u30
momentum (sqrt of) P=Ω unit=u16
velocity V=2πΩ2 unit=u17
length L=2π2Ω2 unit=u13
ampere A=26π3Ω3α unit=u3


References

Template:Reflist

  1. Macleod, Malcolm; "The Sqrt of Planck momentum and the Mathematical Electron". https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3585466"
  2. Macleod, M.J. Template:Cite journal
  3. [1] | CODATA, The Committee on Data for Science and Technology | (2014)