Fundamental Mathematics/Arithmetic/Arithmetic Number/Complex Number

From testwiki
Revision as of 19:32, 6 May 2019 by imported>Alextejthompson (removed Category:Mathematics; added Category:Arithmetic using HotCat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Complex Number

Complex Number

Z=A+iB=|Z|θ=B2+A2Tan1BA=|Z|eiθ

Complex conjugate Number

Z*=AiB=|Z|θ=B2+A2Tan1BA=|Z|eiθ

Mathematical Operations

Operation on 2 different complex numbers

Addition (A+iB)+(C+iD)=(A+C)+i(B+D)
Subtraction (A+iB)(C+iD)=(AC)+i(BD)
Multilication (A+iB)+(C+iD)=(AC+BD)+i(AD+BC)
Division (A+iB)(C+iD)=(A+iB)(C+iD)(C+iD)(C+iD)=(AC+BD)+i(AD+BC)(C+iD)2


Operation on complex numbers and its conjugate

Addition (A+iB)+(AiB)=2A
Subtraction (A+iB)(A+iB)=i2B
Multilication (A+iB)+(AiB)=A2B2
Division (A+iB)(AiB)=(A+iB)(AiB)(AiB)(AiB)=A2B2(AiB)2

In Polar form

Z×Z*=|Z|θ×|Z|θ=|Z|2(θθ)=|Z|2
ZZ*=|Z|θ|Z|θ=12θ

Power of Z

Since

Z×Z=Z2=(|Z|θ)(|Z|θ)=|Z|2(θ+θ)=|Z|22θ

Hence

Zn=Z×Z×Z...=|Z|nnθ


Since

Z*×Z*=(Z*)2=(|Z|θ)(|Z|θ)=|Z|2(θθ)=|Z|22θ

Hence

(Z*)n=Z*×Z*×Z*...=|Z*|nnθ

Euler's formula

Euler formula

eiθ=cosθ+isinθ

of which there is the famous case (for θ = π):

eiπ=1

More generally,

z=x+yi=r(cosθ+isinθ)=reiθ

Eucleur's power can be expressed as complex number

eiθ=cosθ+isinθ

Hence, conjugate of the complex number

eiθ=cosθisinθ

Adding complex number and its conjugate

eiθ+eiθ=2Cosθ
Cosθ=12(eiθ+eiθ)

Minus complex number and its conjugate

eiθeiθ=2iSinθ
Sinθ=12i(eiθeiθ)

de Moivre's formula

zn=(cos(x)+isin(x))n=cos(nx)+isin(nx)=reinθ

for any real x and integer n. This result is known as

Reference