Elasticity/Polynomial solutions

From testwiki
Revision as of 02:38, 5 October 2021 by imported>Dave Braunschweig (Dave Braunschweig moved page Introduction to Elasticity/Polynomial solutions to Elasticity/Polynomial solutions: Rename)
(diff) โ† Older revision | Latest revision (diff) | Newer revision โ†’ (diff)
Jump to navigation Jump to search

Using the Airy Stress Function : Polynomial Solutions

Example 1

Given: Template:Center topφ=ax12+bx1x2+cx22Template:Center bottom Find the problem which fits this solution. Template:Center topσ11=φ,22=2c;σ22=φ,11=2a;σ12=φ,12=bTemplate:Center bottom This is a homogeneous stress field. An infinite number of problems can satisfy these conditions.

Example 2

Given:

 Template:Center topφ=ax13+bx12x2+cx1x22+dx23Template:Center bottom

Find the problem which fits this solution.

 Template:Center topσ11=2cx1+6dx2;σ22=6ax1+2bx2;σ12=2bx12cx2Template:Center bottom

An infinite set of problems can have this stress field as a solution.

If a=b=c=0, then

 Template:Center topσ11=6dx2;σ22=0;σ12=0Template:Center bottom

which corresponds to a plane stress beam under pure bending.

File:Elastic beam bending.png
Pure bending of an elastic beam

Example 3

Consider a cantilevered beam that is fixed at one end and has a vertical force F applied at the free end.

File:Elastic cantilever beam.png
Bending of a cantilevered beam

The boundary conditions on the beam are

σ12=0;x2=±bσ22=0;x2=±bσ11=0;x1=0bbσ12dx2=F;x1=0๐ฎ=๐ŸŽ;x1=a

We will use Maple to solve the problem.

First, assume a polynomial Airy stress function that has a high enough order. In this case a fourth order polynomial will suffice
phi:=C1*x^2+C2*x*y+C3*y^2+C4*x^3+C5*x^2*y+C6*x*y^2+ C7*y^3+C8*x^4+C9*x^3*y+C10*x^2*y^2+C11*x*y^3+C12*y^4;

ϕ:=๐ถ1x2+๐ถ2xy+๐ถ3y2+๐ถ4x3+๐ถ5x2y+๐ถ6xy2+๐ถ7y3+๐ถ8x4+๐ถ9x3y+๐ถ10x2y2+๐ถ11xy3+๐ถ12y4

Take the derivatives of the stress function to obtain the expressions for the stresses.
sxx1:= diff(phi,y,y); syy1:= diff(phi,x,x); sxy1:= -diff(phi,x,y);

๐‘ ๐‘ฅ๐‘ฅ1:=2๐ถ3+2๐ถ6x+6๐ถ7y+2๐ถ10x2+6๐ถ11xy+12๐ถ12y2๐‘ ๐‘ฆ๐‘ฆ1:=2๐ถ1+6๐ถ4x+2๐ถ5y+12๐ถ8x2+6๐ถ9xy+2๐ถ10y2๐‘ ๐‘ฅ๐‘ฆ1:=๐ถ22๐ถ5x2๐ถ6y3๐ถ9x24๐ถ10xy3๐ถ11y2

Next, use the command unapply(...,x,y) to configure the stresses as functions of x,y so that we can find the value at various points, e.g., y=b.
sxx2:=unapply(sxx1,x,y): syy2:=unapply(syy1,x,y): sxy2:=unapply(sxy1,x,y):

We now find the tractions on y=b as
t1:=syy2(x,b); t2:=sxy2(x,b);

๐‘ก1:=2๐ถ1+6๐ถ4x+2๐ถ5b+12๐ถ8x2+6๐ถ9xb+2๐ถ10b2๐‘ก2:=๐ถ22๐ถ5x2๐ถ6b3๐ถ9x24๐ถ10xb3๐ถ11b2

and on y=b
t3:=syy2(x,-b); t4:=sxy2(x,-b);

๐‘ก3:=2๐ถ1+6๐ถ4x2๐ถ5b+12๐ถ8x26๐ถ9xb+2๐ถ10b2๐‘ก4:=๐ถ22๐ถ5x+2๐ถ6b3๐ถ9x2+4๐ถ10xb3๐ถ11b2

On x=0, we have
t5:=sxx2(0,y); t6:=sxy2(0,y);

๐‘ก5:=2๐ถ3+6๐ถ7y+12๐ถ12y2๐‘ก6:=๐ถ22๐ถ6y3๐ถ11y2

The stress function is order 4, so the stresses are order 2 in x and y. The tractions on y=+b or b might therefore be polynomials in x of order 2.

We calculate the coefficients of each power of x in these expressions as
s1:=coeff(t1,x,2); s2:=coeff(t1,x,1); s3:=coeff(t1,x,0); s4:=coeff(t2,x,2); s5:=coeff(t2,x,1); s6:=coeff(t2,x,0); s7:=coeff(t3,x,2); s8:=coeff(t3,x,1); s9:=coeff(t3,x,0); s10:=coeff(t4,x,2); s11:=coeff(t4,x,1); s12:=coeff(t4,x,0);

๐‘ 1:=12๐ถ8๐‘ 2:=6๐ถ4+6๐ถ9b๐‘ 3:=2๐ถ1+2๐ถ5b+2๐ถ10b2๐‘ 4:=3๐ถ9๐‘ 5:=2๐ถ54๐ถ10b๐‘ 6:=๐ถ22๐ถ6b3๐ถ11b2๐‘ 7:=12๐ถ8๐‘ 8:=6๐ถ46๐ถ9b๐‘ 9:=2๐ถ12๐ถ5b+2๐ถ10b2๐‘ 10:=3๐ถ9๐‘ 11:=2๐ถ5+4๐ถ10b๐‘ 12:=๐ถ2+2๐ถ6b3๐ถ11b2

The biharmonic equation is 4th order, so applying it to a 4th order polynomial generates a constant. And this constant must be equal to zero.
biharm:=diff(phi,x$4)+diff(phi,y$4)+2*diff(phi,x,x,y,y);

๐‘๐‘–โ„Ž๐‘Ž๐‘Ÿ๐‘š:=24๐ถ8+24๐ถ12+8๐ถ10

We also calculate the three force resultants on x=0 by integrating over y:
Fx:=int(t5, y=-b..b): Fy:=int(t6, y=-b..b): M:=int(t5*y, y=-b..b):

We now solve for the constants so as to satisfy (i) the strong boundary conditions, (ii) the biharmonic equation and (iii) the weak boundary conditions.
solution:=solve({s1=0,s2=0,s3=0,s4=0,s5=0,s6=0,s7=0, s8=0,s9=0,s10=0,s11=0,s12=0,biharm=0,Fx=0,M=0,Fy=F}, {C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12});

solution:={๐ถ7=0,๐ถ8=0,๐ถ9=0,๐ถ4=0,๐ถ10=0,๐ถ5=0,๐ถ12=0,๐ถ1=0,๐ถ3=0,๐ถ6=0,๐ถ11=F4b3,๐ถ2=3F4b}

Notice that there are more equations than there are constants. Some of the equations are not linearly independent. However, Maple can handle this if there is a solution.

Substitute the solution into the original stress function and calculate the final stresses.
phi:=subs(solution,phi); sxx3:=diff(phi,y,y); syy3:=diff(phi,x,x); sxy3:=-diff(phi,x,y);

ϕ:=3Fxy4b+Fxy34b3

and

๐‘ ๐‘ฅ๐‘ฅ3:=3Fxy2b3๐‘ ๐‘ฆ๐‘ฆ3:=0๐‘ ๐‘ฅ๐‘ฆ3:=3F4b3Fy24b3
File:Elastic cantilever beam stress.png
Stress distribution in an elastic cantilevered beam.

Displacement Boundary Condition

The displacement potential function must satisfy the relations ψ,12=2φ and 2ψ=0.

In this problem,

 Template:Center topφ=3Fx1x24b+Fx1x234b3Template:Center bottom

Therefore,

 Template:Center topψ,12=6Fx1x24b3Template:Center bottom

Integrating,

 Template:Center topψ=3F8x12x22+f(x1)+g(x2)Template:Center bottom

2ψ=0 only if

 Template:Center top3F4(x12+x22)+f'(x1)+g'(x2)=0Template:Center bottom

which means that

 Template:Center topf'(x1)=3F4x12+G;g'(x2)=3F4x22G;Template:Center bottom

These can be integrated to find f(x1) and g(x2) in terms of x1, x2 and constants. The constants can be determined from the displacement BCs applied so as to fix rigid body motion.

The displacements are given by

 Template:Center topu1=P2EI(a2x12)x2P(2+ν)6EIx23+P(1+ν)b28EIx2u2=Pa36EI[23x1a(1νx22a2)+x13a3+3b2(1+ν)4a2(1x1a)]Template:Center bottom

where I=(1/12)w(2b)3, and w = thickness of the beam.

  • Since u1 is no a linear function of x2, plane sections do not remain plane.
  • u1(a,x2)0 and u2(a,x2)0, but St. Venant's principle can be applied.
  • The deflection of the neutral axis (x2=0) is

Template:Center topu2(x1,0)=Pa36EI[23x1a+x13a3+3b2(1+ν)4a2(1x1a)]Template:Center bottom

If b/a0, this prediction approaches beam theory.
  • The maximum deflection is

Template:Center topu2(0,0)=Pa33EIPa36EI3b2(1+ν)4a2Template:Center bottom

General Approach For Beam Problems

  • Find the highest order polynomial terms n and m for the normal and shear tractions on x2y=±b.
  • Use a polynomial of order max(m+4,n+5) excluding constant and linear terms. For example, for a polynomial of order 5
φ=C1x5+C2x4y+C3x3y2+C4x2y3+C5xy4+C6y5+C7x4+C8x3y+C9x2y2+C10xy3+C11y4+C12x3+C13x2y+C14xy2+C15y3+C16x2+C17xy+C18y2
  • Substitute (φ) into the biharmonic equation to get a set of constraint equations. Also compute the stresses.
  • Apply boundary conditions to obtain the tractions at the boundary.
  • For the strong BCs, find the coefficients of powers of x and y and equate with expressions for the tractions.
  • For the weak BCs, find algebraic expressions.
  • Solve the set of equations and back-substitute.

Template:Subpage navbar