Lorentz transformation

From testwiki
Revision as of 05:52, 22 May 2023 by imported>MathXplore (MathXplore moved page Lorentz transformations to Lorentz transformation: per enwiki and main category)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Proposition

Given that the interval xμxμ is invariant under a Lorentz transformation, prove that the Lorentz transformation is orthogonal.

1. x'μx'μ=xαxα. Given.
2. x'μx'μ=gμνx'μx'ν metric tensor
3. x'μ=Λμαxα Lorentz transformation
4. x'ν=Λνβxβ Lorentz transformation
5. x'μx'μ=gμνΛμαxαΛνβxβ Substitute 3 and 4 into 2.
6. xαxα=gαβxαxβ metric tensor
7. gμνΛμαxαΛνβxβ=gαβxαxβ From 5, 1, and 6.
8. gμνΛμαΛνβxαxβ=gαβxαxβ Rearrange 7.
9. gμνΛμαΛνβ=gαβ From 8, since xα and xβ may be arbitrary.
10. gαβgαγ=δγβ Kronecker delta
11. gμνΛμαΛνβgαγ=δγβ Multiply both sides of 9 by gαγ, then apply 10.
12. gμνΛμγΛνβ=δγβ Contracting the indices α in 11.
13. ΛνγΛνβ=δγβ Contracting the indices μ in 12.
14. (ΛT)γνΛνβ=δγβ Swap the order of indices in order to transpose the first Λ of 13.
15. ΛT=Λ1 14 may be paraphrased as ΛTΛ=I.

Reference: http://www.physics.gla.ac.uk/~dmiller/lectures/RQM_2008.pdf, page 9.