Elasticity/Concentrated force on half plane

From testwiki
Revision as of 16:47, 6 March 2022 by imported>Dave Braunschweig (Remove math tags from headings)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:TOCright

Concentrated force on a half-plane

File:Concentrated force on half plane.png
Concentrated force on a half plane

From the Flamant Solution

F1+2αβ(C1cosθC3sinθa)acosθdθ=0F2+2αβ(C1cosθC3sinθa)asinθdθ=0

and

σrr=2C1cosθr+2C3sinθr;σrθ=σθθ=0

If α=π andβ=0, we obtain the special case of a concentrated force acting on a half-plane. Then,

F1+2π0(C1cos2θC32sin(2θ))dθ=0F2+2π0(C12sin(2θ)C3sin2θ)dθ=0

or,

F1+πC1=0F2πC3=0

Therefore,

C1=F1π;C3=F2π

The stresses are

σrr=2F1cosθπr2F2sinθπr;σrθ=σθθ=0

The stress σrr is obviously the superposition of the stresses due to F1 and F2, applied separately to the half-plane.


Problem 1 : Stresses and displacements due to F2

The tensile force F2 produces the stress field

σrr=2F2sinθπr;σrθ=σθθ=0
File:Stress conc force half plane.png
Stress due to concentrated force F2 on a half plane

The stress function is

φ=F2πrθcosθ

Hence, the displacements from Michell's solution are

2μur=F22π[(κ1)θcosθ+sinθ(κ+1)ln(r)sinθ]2μuθ=F22π[(κ1)θsinθcosθ(κ+1)ln(r)cosθ]

At θ=0, (x1>0, x2=0),

2μur=2μu1=02μuθ=2μu2=F22π[1(κ+1)ln(r)]

At θ=π, (x1<0, x2=0),

2μur=2μu1=F22π(κ1)2μuθ=2μu2=F22π[1+(κ+1)ln(r)]

where

κ=34νplane strainκ=3ν1+νplane stress

Since we expect the solution to be symmetric about x=0, we superpose a rigid body displacement

2μu1=F24π(κ1)2μu2=F22π

The displacements are

u1=F2(κ1)sign(x1)8μu2=F2(κ+1)ln|x1|4πμ

where

sign(x)={+1x>01x<0

and r=|x| on y=0.

Problem 2 : Stresses and displacements due to F1

The tensile force F1 produces the stress field

σrr=2F2cosθπr;σrθ=σθθ=0
File:Stress1 conc force half plane.png
Stress due to concentrated force F1 on a half plane

The displacements are

u1=F1(κ+1)ln|x1|4πμu2=F1(κ1)sign(x1)8μ

Stresses and displacements due to F1 + F2

Superpose the two solutions. The stresses are

σrr=2F1cosθπr2F2sinθπr;σrθ=σθθ=0

The displacements are

u1=F1(κ+1)ln|x1|4πμ+F2(κ1)sign(x1)8μu2=F2(κ+1)ln|x1|4πμF1(κ1)sign(x1)8μ


Template:Subpage navbar