Complex Analysis/Exercises/Sheet 2/Task 3

From testwiki
Revision as of 12:11, 14 January 2025 by imported>Eshaa2024 (New resource with "==== Task (Working with Polynomials, 5 Points) ==== Consider a polynomial <math>p\colon \mathbf C \to \mathbf C</math>, given by <center><math> p(z) = \sum_{{0\le \kappa \le k\atop 0 \le \lambda \le \ell}} a_{\kappa\lambda} x^\kappa y^\lambda</math></center> with <math>x = \mathop{\rm Re} z</math> and <math>y = \mathop{\rm Im} z</math>. Show that <math>p</math> can also be expressed as a polynomial in <math>z</math> and <math>\bar z</math> by specifying the coefficie...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Task (Working with Polynomials, 5 Points)

Consider a polynomial p:𝐂𝐂, given by

p(z)=0κk0λaκλxκyλ

with x=Rez and y=Imz. Show that p can also be expressed as a polynomial in z and z¯ by specifying the coefficients in

p(z)=0μm0νnbμνzμz¯ν

.

Solution

For z=x+iy,is z¯=xiy. Solving the system

z=x+iyz¯=xiy

for x,y, we get x=12(z+z¯) and y=12i(zz¯). We substitute these into p. Using the Binomial theorem, we get

p(z)=κ,λaκλxκyλ=κ,λaκλ12κ(z+z¯)κ1(2i)λ(zz¯)λ=κ,λaκλ2κ+λiλα=0κ(κα)zαz¯καβ=0λ(1)λβ(λβ)zβz¯λβ=κ,λα=0κβ=0λaκλ2κ+λiλ(κα)(1)λβ(λβ)zα+βz¯κ+λ(α+β)

We then perform an index transformation, replacing the summation over α with a summation over μ:=α+β. Since 0ακ,0βλ, μ ranges from 0 to κ+λ. For a fixed μ, we consider β values between 0 and λ, where 0μβκ, so μκβμ. Hence, β ranges from max(0,μκ) to min(μ,λ). We get

p(z)=κ,λα=0κβ=0λaκλ2κ+λiλ(κα)(1)λβ(λβ)zα+βz¯κ+λ(α+β)=κ,λμ=0κ+λβ=max(0,μκ)min(μ,λ)aκλ2κ+λiλ(κμβ)(1)λβ(λβ)zμz¯κ+λμ

We then switch the order of summation. We have 0μk+ and for a fixed μ, κ+λμ, which means λμκ, resulting in

p(z)=κ,λμ=0κ+λβ=max(0,μκ)min(μ,λ)aκλ2κ+λiλ(κμβ)(1)λβ(λβ)zμz¯κ+λμ=μ=0k+κ=0μλ=μκβ=max(0,μκ)min(μ,λ)aκλ2κ+λiλ(κμβ)(1)λβ(λβ)zμz¯κ+λμ

Finally, we perform another index transformation. We replace κ with ν:=κ+λμ. ν ranges from 0 to k+. For a fixed ν, we have κ=ν+μλ. Therefore, we consider only values of λ for which 0ν+μλμ, i.e., νλν+μ. We get

p(z)=μ=0k+κ=0μλ=μκβ=max(0,μκ)min(μ,λ)aκλ2κ+λiλ(κμβ)(1)λβ(λβ)zμz¯κ+λμ=μ=0k+ν=0k+(λ=νmin(,ν+μ)β=λνmin(μ,λ)aμ+νλ,λ2μ+νiλ(μ+νλμβ)(1)λβ(λβ))zμz¯ν

Thus,

bμν=λ=νmin(,ν+μ)β=λνmin(μ,λ)aμ+νλ,λ2μ+νiλ(μ+νλμβ)(1)λβ(λβ),0μ,νk+

Translation and Version Control

This page was translated based on the following Wikiversity source page and uses the concept of Translation and Version Control for a transparent language fork in a Wikiversity:

https://de.wikiversity.org/wiki/Kurs:Funktionentheorie/Übungen/2._Zettel/Aufgabe_3

  • Date: 01/14/2024


de:Kurs:Funktionentheorie/Übungen/2._Zettel/Aufgabe_3