Elasticity/Energy methods example 1

From testwiki
Revision as of 02:38, 5 October 2021 by imported>Dave Braunschweig (Dave Braunschweig moved page Introduction to Elasticity/Energy methods example 1 to Elasticity/Energy methods example 1: Rename)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Example 1

Given:

Πc[σ(𝐱)+Δσ(𝐱)]Πc[σ(𝐱)]=[Uc(σ+Δσ)Uc(σ)ε:Δσ]dV

Show:

Πc[σ(𝐱)+Δσ(𝐱)]Πc[σ(𝐱)]=Uc(Δσ)dV

Solution

For a linear elastic material, the complementary strain energy density is given by

Uc(σ)=12σ:S:σ

where S is the compliance tensor.

Therefore,

Uc(σ+Δσ)=12(σ+Δσ):S:(σ+Δσ)=12(σij+Δσij)Sijkl(σkl+Δσkl)

or (using the symmetry of the compliance tensor),

Uc(σ+Δσ)=12[σijσkl+σijΔσkl+σklΔσij+ΔσijΔσkl]Sijkl=12[σijSijklσkl+σijSijklΔσkl+σklSijklΔσij+ΔσijSijklΔσkl]=12[σijSijklσkl+εklΔσkl+εijΔσij+ΔσijSijklΔσkl]=12[σijSijklσkl+2εklΔσkl+ΔσijSijklΔσkl]=12σ:S:σ+ε:Δσ+12Δσ:S:Δσ=Uc(σ)+ε:Δσ+Uc(Δσ)

Therefore,

Uc(σ+Δσ)=Uc(σ)+ε:Δσ+Uc(Δσ)

Plugging into the given equation

Πc[σ(𝐱)+Δσ(𝐱)]Πc[σ(𝐱)]=[Uc(σ)+ε:Δσ+Uc(Δσ)Uc(σ)ε:Δσ]dV

or,

Πc[σ(𝐱)+Δσ(𝐱)]Πc[σ(𝐱)]=Uc(Δσ)dV

Hence shown.

Template:Subpage navbar