Table of physical constants

From testwiki
Revision as of 17:01, 4 April 2023 by imported>Dave Braunschweig (See also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Table of universal constants

Quantity Symbol Value Relative Standard Uncertainty
characteristic impedance of vacuum Z0=μ0c 376.730 313 461... Ω defined
electric constant (permittivity of free space) ε0=1/(μ0c2) 8.854 187 817... × 10-12F·m-1 defined
magnetic constant (permeability of free space) μ0 4π × 10-7 N·A-2 = 1.2566 370 614... × 10-6 N·A-2 defined
gravitational constant (Newtonian constant of gravitation) G 6.6742(10) × 10-11m3·kg-1·s-2 1.5 × 10-4
Planck's constant h 6.626 0693(11) × 10-34 J·s 1.7 × 10-7
Dirac's constant =h/(2π) 1.054 571 68(18) × 10-34 J·s 1.7 × 10-7
speed of light in vacuum c 299 792 458 m·s-1 defined

Table of electromagnetic constants

Quantity Symbol Value1 (SI units) Relative Standard Uncertainty
Bohr magneton μB=e/2me 927.400 949(80) × 10-26 J·T-1 8.6 × 10-8
conductance quantum G0=2e2/h 7.748 091 733(26) × 10-5 S 3.3 × 10-9
Coulomb's constant κ=1/4πε0 8.987 742 438 × 109 N·m2C-2 defined
elementary charge e 1.602 176 53(14) × 10-19 C 8.5 × 10-8
Josephson constant KJ=2e/h 483 597.879(41) × 109 Hz· V-1 8.5 × 10-8
magnetic flux quantum ϕ0=h/2e 2.067 833 72(18) × 10-15 Wb 8.5 × 10-8
nuclear magneton μN=e/2mp 5.050 783 43(43) × 10-27 J·T-1 8.6 × 10-8
resistance quantum R0=h/2e2 12 906.403 725(43) Ω 3.3 × 10-9
von Klitzing constant RK=h/e2 25 812.807 449(86) Ω 3.3 × 10-9

Table of atomic and nuclear constants

Quantity Symbol Value1 (SI units) Relative Standard Uncertainty
Bohr radius a0=α/4πR 0.529 177 2108(18) × 10-10 m 3.3 × 10-9
Fermi coupling constant GF/(c)3 1.166 39(1) × 10-5 GeV-2 8.6 × 10-6
fine structure constant α=μ0e2c/(2h)=e2/(4πε0c) 7.297 352 568(24) × 10-3 3.3 × 10-9
Hartree energy Eh=2Rhc 4.359 744 17(75) × 10-18 J 1.7 × 10-7
quantum of circulation h/2me 3.636 947 550(24) × 10-4 m2 s-1 6.7 × 10-9
Rydberg constant R=α2mec/2h 10 973 731.568 525(73) m-1 6.6 × 10-12
Thomson cross section (8π/3)re2 0.665 245 873(13) × 10-28 m2 2.0 × 10-8
Weinberg angle|weak mixing angle sin2θW=1(mW/mZ)2 0.222 15(76) 3.4 × 10-3

Table of physico-chemical constants

Quantity Symbol Value1 (SI units) Relative Standard Uncertainty
atomic mass constant (unified atomic mass unit) mu=1 u 1.660 538 86(28) × 10-27 kg 1.7 × 10-7
Avogadro's number NA,L 6.0221417(10) × 1023 1.7 × 10-7
Boltzmann constant k=R/NA 1.380 6505(24) × 10-23 J·K-1 1.8 × 10-6
Faraday constant F=NAe 96 485.3383(83)C·mol-1 8.6 × 10-8
first radiation constant c1=2πhc2 3.741 771 38(64) × 10-16 W·m2 1.7 × 10-7
for spectral radiance c1L 1.191 042 82(20) × 10-16 W · m2 sr-1 1.7 × 10-7
Loschmidt constant at T=273.15 K and p=101.325 kPa n0=NA/Vm 2.686 7773(47) × 1025 m-3 1.8 × 10-6
gas constant R 8.314 472(15) J·K-1·mol-1 1.7 × 10-6
molar Planck constant NAh 3.990 312 716(27) × 10-10 J · s · mol-1 6.7 × 10-9
molar volume of an ideal gas at T=273.15 K and p=100 kPa Vm=RT/p 22.710 981(40) × 10-3 m3 ·mol-1 1.7 × 10-6
at T=273.15 K and p=101.325 kPa 22.413 996(39) × 10-3 m3 ·mol-1 1.7 × 10-6
Sackur-Tetrode constant at T=1 K and p=100 kPa S0/R=52
+ln[(2πmukT/h2)3/2kT/p]
-1.151 7047(44) 3.8 × 10-6
at T=1 K and p=101.325 kPa -1.164 8677(44) 3.8 × 10-6
second radiation constant c2=hc/k 1.438 7752(25) × 10-2 m·K 1.7 × 10-6
Stefan-Boltzmann constant σ=(π2/60)k4/3c2 5.670 400(40) × 10-8 W·m-2·K-4 7.0 × 10-6
Wien displacement law constant b=(hc/k)/ 4.965 114 231... 2.897 7685(51) × 10-3 m · K 1.7 × 10-6

Table of adopted values

Quantity Symbol Value (SI units) Relative Standard Uncertainty
conventional value of Josephson constant2 KJ90 483 597.9 × 109 Hz · V-1 defined
conventional value of von Klitzing constant3 RK90 25 812.807 Ω defined
molar mass constant Mu=M(12C)/12 1 × 10-3 kg · mol-1 defined
of carbon-12 M(12C)=NAm(12C) 12 × 10-3 kg · mol−1 defined
standard acceleration of gravity (free fall on Earth) gn 9.806 65 m·s-2 defined
standard atmosphere atm 101 325 Pa defined

Notes

1The values are given in the so-called concise form; the number in brackets is the standard uncertainty, which is the value multiplied by the relative standard uncertainty.
2This is the value adopted internationally for realizing representations of the volt using the Josephson effect.
3This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

See also