Nonlinear finite elements/Homework 5/Solutions/Problem 1

From testwiki
Revision as of 03:17, 14 March 2018 by imported>MaintenanceBot (Special:LintErrors/misnested-tag)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Problem 1: Nonlinear Beam Bending

Given:

The differential equations governing the bending of straight beams are

dNxxdx+f(x)=0dVdx+q(x)=0dMxxdxV+Nxxdw0dx=0

Solution

Part 1

Show that the weak forms of these equations can be written as

xaxbdv1dxNxxdx=xaxbv1fdx+v1Nxx|xaxbxaxb[dv2dx(dw0dxNxx)d2v2dx2Mxx]dx=xaxbv2qdx+v2(dw0dxNxx+dMxxdx)|xaxbdv2dxMxx|xaxb


First we get rid of the shear force term by combining the second and third equations to get

dNxxdx+f(x)=0(1)d2Mxxdx2+q(x)+ddx(Nxxdw0dx)=0(2)

Let v1 be the weighting function for equation (1) and let v2 be the weighting function for equation (2).

Then the weak forms of the two equations are

xaxbv1(dNxxdx+f(x))dx=0(3)xaxbv2[d2Mxxdx2+q(x)+ddx(Nxxdw0dx)]dx=0(4)

To get the symmetric weak forms, we integrate by parts (even though the symmetry is not obvious at this stage) to get

(v1Nxx)|xaxbxaxbdv1dxNxxdx+xaxbv1f(x)dx=0(5)(v2dMxxdx)|xaxbxaxbdv2dxdMxxdxdx+xaxbv2q(x)dx+(v2Nxxdw0dx)|xaxbxaxbdv2dx(Nxxdw0dx)dx=0(6)

Integrate equation (6) again by parts, and get

(v2dMxxdx)|xaxb(dv2dxMxx)|xaxb+xaxbd2v2dx2Mxxdx+xaxbv2q(x)dx+(v2Nxxdw0dx)|xaxbxaxbdv2dx(Nxxdw0dx)dx=0(7)

Collect terms and rearrange equations (5) and (7) to get

xaxbdv1dxNxxdx=xaxbv1f(x)dx+(v1Nxx)|xaxb(8)xaxb[dv2dx(Nxxdw0dx)d2v2dx2Mxx]dx=xaxbv2q(x)dx+[(v2dMxxdx)(dv2dxMxx)+(v2Nxxdw0dx)]xaxb(9)

Rewriting the equations, we get

xaxbdv1dxNxxdx=xaxbv1fdx+v1Nxx|xaxbxaxb[dv2dx(Nxxdw0dx)d2v2dx2Mxx]dx=xaxbv2qdx+[v2(dMxxdx+Nxxdw0dx)]xaxb[dv2dxMxx]xaxb(10)

Hence shown.

Part 2

The von Karman strains are related to the displacements by

εxx=εxx0+zεxx1εxx0=du0dx+12(dw0dx)2εxx1=d2w0dx2

The stress and moment resultants are defined as

Nxx=AσxxdAMxx=AzσxxdA

For a linear elastic material, the stiffnesses of the beam in extension and bending are defined as

Axx=AEdAextensional stiffnessBxx=AzEdAextensional-bending stiffnessDxx=Az2EdAbending stiffness

where E is the Young's modulus of the material.

Derive expressions for Nxx and Mxx in terms of the displacements u0 and w0 and the extensional and bending stiffnesses of the beam assuming a linear elastic material.


The stress-strain relations for an isotropic linear elastic material are

[σxxσyyσzzσyzσzxσxy]=E(1+ν)(12ν)[1ννν000ν1νν000νν1ν000000(12ν)000000(12ν)000000(12ν)][εxxεyyεzzεyzεzxεxy]

Since all strains other than εxx are zero, the above equations reduce to

σxx=E(1ν)(1+ν)(12ν)εxx;σyy=Eν(1+ν)(12ν)εxx;σzz=Eν(1+ν)(12ν)εxx.

If we ignore the stresses σyy and σzz, the only allowable value of ν is zero. Then the stress-strain relations become

σxx=Eεxx.

Plugging this relation into the stress and moment of stress resultant equations, we get

Nxx=AEεxxdAMxx=AzEεxxdA

Plugging in the relations for the strain we get

Nxx=AE(εxx0+zεxx1)dA=AEεxx0dA+AzEεxx1dAMxx=AzE(εxx0+zεxx1)dA=AzEεxx0dA+Az2Eεxx1dA.

Since both εxx0 and εxx1 are independent of y and z, we can take these quantities outside the integrals and get

Nxx=εxx0AEdA+εxx1AzEdAMxx=εxx0AzEdA+εxx1Az2EdA.

Using the definitions of the extensional, extensional-bending, and bending stiffness, we can then write

Nxx=εxx0Axx+εxx1BxxMxx=εxx0Bxx+εxx1Dxx.

To write these relations in terms of u0 and w0 we substitute the expressions for the von Karman strains to get

Nxx=[du0dx+12(dw0dx)2]Axxd2w0dx2BxxMxx=[du0dx+12(dw0dx)2]Bxxd2w0dx2Dxx.

These are the expressions of the resultants in terms of the displacements.

Part 3

Express the weak forms in terms of the displacements and the extensional and bending stiffnesses.

The weak form equations are

xaxbdv1dxNxxdx=xaxbv1fdx+v1Nxx|xaxb(11)xaxb[dv2dx(Nxxdw0dx)d2v2dx2Mxx]dx=xaxbv2qdx+[v2(dMxxdx+Nxxdw0dx)]xaxb[dv2dxMxx]xaxb(12)

At this stage we make two more assumptions:

  1. The elastic modulus is constant throughout the cross-section.
  2. The x-axis passes through the centroid of the cross-section.

From the first assumption, we have

Bxx=EAzdA.

From the second assumption, we get

AzdA=0Bxx=0.

Then the relations for Nxx and Mxx reduce to

Nxx=[du0dx+12(dw0dx)2]Axx(13)Mxx=d2w0dx2Dxx(14).

Let us first consider equation (11). Plugging in the expression for Nxx we get

xaxbdv1dx[du0dx+12(dw0dx)2]Axxdx=xaxbv1fdx+v1Nxx|xaxb

We can also write the above in terms of virtual displacements by defining δu0:=v1, Q1:=Nxx(xa), and Q4:=Nxx(xb). Then we get

xaxbd(δu0)dx[du0dx+12(dw0dx)2]Axxdx=xaxb(δu0)fdx+δu0(xa)Q1+δu0(xb)Q4.

Next, we do the same for equation (12). Plugging in the expressions for Nxx and Mxx, we get

xaxb{dv2dx([du0dx+12(dw0dx)2]Axxdw0dx)+d2v2dx2(d2w0dx2)Dxx}dx=xaxbv2qdx+[v2(dMxxdx+Nxxdw0dx)]xaxb[dv2dxMxx]xaxb

We can write the above in terms of the virtual displacements and the generalized forces by defining

δw0:=v2δθ:=dv2dxQ2:=[dMxxdx+Nxxdw0dx]xaQ5:=[dMxxdx+Nxxdw0dx]xbQ3:=Mxx(xa)Q6:=Mxx(xb)

to get

xaxb{d(δw0)dx[du0dx+12(dw0dx)2]dw0dxAxx+d2(δw0)dx2(d2w0dx2)Dxx}dx=xaxb(δw0)qdx+δw0(xa)Q2+δw0(xb)Q5+δθ(xa)Q3+δθ(xb)Q6.

Part 4

Assume that the approximate solutions for the axial displacement and the transverse deflection over a two noded element are given by

u0(x)=u1ψ1(x)+u2ψ2(x)(15)w0(x)=w1ϕ1(x)+θ1ϕ2(x)+w2ϕ3(x)+θ2ϕ4(x)(16)

where θ=(dw0/dx).

Compute the element stiffness matrix for the element.

The weak forms of the governing equations are

xaxbd(δu0)dx[du0dx+12(dw0dx)2]Axxdx=xaxb(δu0)fdx+δu0(xa)Q1+δu0(xb)Q4(17)xaxb{d(δw0)dx[du0dx+12(dw0dx)2]dw0dxAxx+d2(δw0)dx2(d2w0dx2)Dxx}dx=xaxb(δw0)qdx+δw0(xa)Q2+δw0(xb)Q5+δθ(xa)Q3+δθ(xb)Q6.(18)

Let us first write the approximate solutions as

u0(x)=j=12ujψj(19)w0(x)=j=14djϕj(20)

where dj are generalized displacements and

{d1,d2,d3,d4}{w1,θ1,w2,θ2}.

To formulate the finite element system of equations, we substitute the expressions from u0 and w0 from equations (19) and (20) into the weak form, and substitute the shape functions ψi for δu0, ϕi for δw0.

For the first equation (17) we get

xaxbdψidx[(j=12ujdψjdx)+12dw0dx(j=14djdϕjdx)]Axxdx=xaxbψifdx+ψi(xa)Q1+ψi(xb)Q4.

After reorganizing, we have

j=12[xaxbAxxdψidxdψjdxdx]uj+j=14[12xaxb(Axxdw0dx)dψidxdϕjdxdx]dj=xaxbψifdx+ψi(xa)Q1+ψi(xb)Q4.

We can write the above as

j=12Kij11uj+j=14Kij12dj=Fi1

where i=1,2 and

Kij11=xaxbAxxdψidxdψjdxdxKij12=12xaxb(Axxdw0dx)dψidxdϕjdxdxFi1=xaxbψifdx+ψi(xa)Q1+ψi(xb)Q4.

For the second equation (18) we get

xaxb{dϕidx[(j=12ujdψjdx)+12dw0dx(j=14djdϕjdx)]dw0dxAxx+d2ϕidx2(j=14djd2ϕjdx2)Dxx}dx=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6

After rearranging we get

j=12[xaxb(Axxdw0dx)dϕidxdψjdxdx]uj+j=14{12xaxb[Axx(dw0dx)2]dϕidxdϕjdxdx}dj+j=14(xaxbDxxd2ϕidx2d2ϕjdx2dx)dj=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6

We can write the above as

j=12Kij21uj+j=14Kij22dj=Fi2

where i=1,2,3,4 and

Kij21=xaxb(Axxdw0dx)dϕidxdψjdxdxKij22=xaxb{12[Axx(dw0dx)2]dϕidxdϕjdx+Dxxd2ϕidx2d2ϕjdx2}dxFi2=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6.

In matrix form, we can write

𝐊=[K1111K1211K1112K1212K1312K1412K2111K2211K2112K2212K2312K2412K1121K1221K1122K1222K1312K1412K2121K2221K2122K2222K2312K2412K3121K3221K3122K3222K3322K3422K4121K4221K4122K4222K4322K4422]

or

𝐊=[𝐊11𝐊12𝐊21𝐊22].

The finite element system of equations can then be written as

(21)[K1111K1211K1112K1212K1312K1412K2111K2211K2112K2212K2312K2412K1121K1221K1122K1222K1312K1412K2121K2221K2122K2222K2312K2412K3121K3221K3122K3222K3322K3422K4121K4221K4122K4222K4322K4422][u1u2d1d2d3d4]=[F11F21F12F22F32F42]

or

[𝐊11𝐊12𝐊21𝐊22][𝐮𝐝]=[𝐅1𝐅2].

Part 5

Show the alternate procedure by which the element stiffness matrix can be made symmetric.

The stiffness matrix is unsymmetric because 𝐊12 contains a factor of 1/2 while 𝐊21 does not. The expressions of these terms are

Kij12=12xaxb(Axxdw0dx)dψidxdϕjdxdx,i=1,2,andj=1,2,3,4Kij21=xaxb(Axxdw0dx)dϕidxdψjdxdx,i=1,2,3,4,andj=1,2.

To get a symmetric stiffness matrix, we write equation (18) as

xaxb{d(δw0)dx[12du0dx+12(dw0dx)2+12du0dx]dw0dxAxx+d2(δw0)dx2(d2w0dx2)Dxx}dx=xaxb(δw0)qdx+δw0(xa)Q2+δw0(xb)Q5+δθ(xa)Q3+δθ(xb)Q6.

The quantity is green is assumed to be known from a previous iteration and adds to the 𝐊22 terms.

Repeating the procedure used in the previous question

xaxb{dϕidx[12(j=12ujdψjdx)+12dw0dx(j=14djdϕjdx)]dw0dxAxx+12dϕidxdu0dx(j=14djdϕjdx)Axx+d2ϕidx2(j=14djd2ϕjdx2)Dxx}dx=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6

After rearranging we get

j=12[12xaxb(Axxdw0dx)dϕidxdψjdxdx]uj+j=14{12xaxb[Axx(dw0dx)2]dϕidxdϕjdxdx}dj+j=14[12xaxbAxxdu0dxdϕidxdϕjdxdx]dj+j=14(xaxbDxxd2ϕidx2d2ϕjdx2dx)dj=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6

We can write the above as

j=12Kij21uj+j=14Kij22dj=Fi2

where i=1,2,3,4 and

Kij21=12xaxb(Axxdw0dx)dϕidxdψjdxdxKij22=xaxb{12Axx[du0dx+(dw0dx)2]dϕidxdϕjdx+Dxxd2ϕidx2d2ϕjdx2}dxFi2=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6.

This gives us a symmetric stiffness matrix.

Part 6

Derive the element tangent stiffness matrix for the element.

Equation (21) can be written as

𝐊(𝐔)𝐔=𝐅

where

U1=u1,U2=u2,U3=d1,U4=d2,U5=d3,U6=d4F1=F11,F2=F21,F3=F12,F4=F22,F5=F32,F6=F42

The residual is

𝐑=𝐊𝐔𝐅.

For Newton iterations, we use the algorithm

𝐔r+1=𝐔r(𝐓r)1𝐑r

where the tangent stiffness matrix is given by

𝐓r=𝐑r𝐔.

The coefficients of the tangent stiffness matrix are given by

Tij=RiUj,i=16,j=16.

Recall that the finite element system of equations can be written as

p=12Kmp11up+q=14Kmq12dq=Fm1,m=1,2p=12Knp21up+q=14Knq22dq=Fn2,n=1,2,3,4

where the subscripts have been changed to avoid confusion.

Therefore, the residuals are

Rm1=p=12Kmp11up+q=14Kmq12dqFm1,m=1,2Rn2=p=12Knp21up+q=14Knq22dqFn2,n=1,2,3,4.

The derivatives of the residuals with respect to the generalized displacements are

Tmk11=Rm1uk=p=12uk(Kmp11up)+q=14uk(Kmq12dq),m=1,2;k=1,2Tml12=Rm1dl=p=12dl(Kmp11up)+q=14dl(Kmq12dq),m=1,2;l=1,2,3,4Tnk21=Rn2uk=p=12uk(Knp21up)+q=14uk(Knq22dq),n=1,2,3,4;k=1,2Tnl22=Rn2dl=p=12dl(Knp21up)+q=14dl(Knq22dq),n=1,2,3,4;l=1,2,3,4.

Differentiating, we get

Tmk11=p=12(upKmp11uk+Kmp11upuk)+q=14(dqKmq12uk+Kmq12dquk),m=1,2;k=1,2Tml12=p=12(upKmp11dl+Kmp11updl)+q=14(dqKmq12dl+Kmq12dqdl),m=1,2;l=1,2,3,4Tnk21=p=12(upKnp21uk+Knp21upuk)+q=14(dqKnq22uk+Knq22dquk),n=1,2,3,4;k=1,2Tnl22=p=12(upKnp21dl+Knp21updl)+q=14(dqKnq22dl+Knq22dqdl),n=1,2,3,4;l=1,2,3,4.

These equations can therefore be written as

Tmk11=Kmk11+p=12upKmp11uk+q=14dqKmq12uk,m=1,2;k=1,2Tml12=Kml12+p=12upKmp11dl+q=14dqKmq12dl,m=1,2;l=1,2,3,4Tnk21=Knk21+p=12upKnp21uk+q=14dqKnq22uk,n=1,2,3,4;k=1,2Tnl22=Knl22+p=12upKnp21dl+q=14dqKnq22dl,n=1,2,3,4;l=1,2,3,4.

Now, the coefficients of 𝐊11, 𝐊12, and 𝐊21 of the symmetric stiffness matrix are independent of u1 and u2. Also, the terms of 𝐊11 are independent of the all the generalized displacements. Therefore, the above equations reduce to

Tmk11=Kmk11,m=1,2;k=1,2Tml12=Kml12+q=14dqKmq12dl,m=1,2;l=1,2,3,4Tnk21=Knk21+q=14dqKnq22uk,n=1,2,3,4;k=1,2Tnl22=Knl22+p=12upKnp21dl+q=14dqKnq22dl,n=1,2,3,4;l=1,2,3,4.

Consider the coefficients of 𝐓12:

Tml12=Kml12+q=14dqKmq12dl,m=1,2;l=1,2,3,4.

From our previous derivation, we have

Kmq12=12xaxb(Axxdw0dx)dψmdxdϕqdxdx.

Therefore,

Kmq12dl=12xaxb[Axxdl(dw0dx)]dψmdxdϕqdxdx=12xaxb[Axx(T=14dTdldϕTdx)]dψmdxdϕqdxdx=12xaxb[Axxdϕldx]dψmdxdϕqdxdx

The tangent stiffness matrix coefficients are therefore

Tml12=Kml12+q=14dq{12xaxb[Axxdϕldx]dψmdxdϕqdxdx}m=1,2;l=1,2,3,4.=Kml12+12xaxbAxxdϕldxdψmdx(q=14dqdϕqdx)dx=Kml12+12xaxbAxxdϕldxdψmdxdw0dxdx=2Kml12.

Next, {consider the coefficients of 𝐓21:

Tnk21=Knk21+q=14dqKnq22uk.

The coefficients of 𝐊22 are

Knq22=xaxb{12Axx[du0dx+(dw0dx)2]dϕndxdϕqdx+Dxxd2ϕndx2d2ϕqdx2}dx.

Therefore, the derivatives are

Knq22uk=xaxb12Axx[T=12uTukdψTdx+2dw0dx(T=14dTukdϕTdx)]dϕndxdϕqdxdx=12xaxbAxxdψkdxdϕndxdϕqdxdx

Therefore the coefficients of 𝐓21 are

Tnk21=Knk21+q=14dq(12xaxbAxxdψkdxdϕndxdϕqdxdx)=Knk21+12xaxbAxxdψkdxdϕndx(q=14dqdϕqdx)dx=Knk21+12xaxbAxxdψkdxdϕndxdw0dxdx=2Knk21.

Finally, for the 𝐓22 coefficients, we start with

Tnl22=Knl22+p=12upKnp21dl+q=14dqKnq22dl,n=1,2,3,4;l=1,2,3,4

and plug in the derivatives of the stiffness matrix coefficients

Knp21=12xaxb(Axxdw0dx)dϕndxdψpdxdxKnq22=xaxb{12Axx[du0dx+(dw0dx)2]dϕndxdϕqdx+Dxxd2ϕndx2d2ϕqdx2}dx. \\

The derivatives are

Knp21dl=12xaxb[Axxdl(dw0dx)]dϕndxdψpdxdx=12xaxbAxx[T=14dTdldϕTdx]dϕndxdψpdxdx=12xaxbAxxdϕldxdϕndxdψpdxdx

and

Knq22dl=xaxb12Axx[T=12uTdldψTdx+2dw0dx(T=14dTdldϕTdx)]dϕndxdϕqdxdx=xaxbAxxdw0dxdϕldxdϕndxdϕqdxdx

Therefore, the coefficients of the tangent stiffness matrix can be written as

Tnl22=Knl22+p=12up[12xaxbAxxdϕldxdϕndxdψpdxdx]+q=14dq[xaxbAxxdw0dxdϕldxdϕndxdϕqdxdx]=Knl22+12xaxbAxxdϕldxdϕndx(p=12updψpdx)dx+xaxbAxxdw0dxdϕldxdϕndx(q=14dqdϕqdx)dx=Knl22+12xaxbAxxdϕldxdϕndxdu0dxdx+xaxbAxxdw0dxdϕldxdϕndxdw0dxdx=Knl22+12xaxbAxx[du0dx+2(dw0dx)2]dϕldxdϕndxdx.

The final expressions for the tangent stiffness matrix terms are

Tij11=Kij11,i=1,2;j=1,2Tij12=2Kij12,i=1,2;j=1,2,3,4Tij21=2Kij21,i=1,2,3,4;j=1,2Tij22=Kij22+12xaxbAxx[du0dx+2(dw0dx)2]dϕidxdϕjdxdxi=1,2,3,4;j=1,2,3,4.

Template:Subpage navbar