Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 9

From testwiki
Revision as of 21:28, 19 August 2020 by imported>ShakespeareFan00 (lint)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search

Problem 1: Part 9

Template:Font

The x and y coordinates of the master and slave nodes are

[x1y1x2y2]=[rcosθ1rsinθ1rcosθ2rsinθ2]=[0.550000.952630.952630.55000]
[x1y1x2y2]=[r1cosθ1r1sinθ1r1cosθ2r1sinθ2]=[0.500000.866030.866030.50000]
[x1+y1+x2+y2+]=[r2cosθ1r2sinθ1r2cosθ2r2sinθ2]=[0.600001.03921.03920.60000]

Since there are two master nodes in an element, the parent element is a four-noded quad with shape functions

N1(ξ,η)=14(1ξ)(1η)N2(ξ,η)=14(1+ξ)(1η)N1+(ξ,η)=14(1ξ)(1+η)N2+(ξ,η)=14(1+ξ)(1+η).

The isoparametric map is

x(ξ,η)=x1N1(ξ,η)+x2N2(ξ,η)+x1+N1+(ξ,η)+x2+N2+(ξ,η)y(ξ,η)=y1N1(ξ,η)+y2N2(ξ,η)+y1+N1+(ξ,η)+y2+N2+(ξ,η).

Plugging in the numbers, we get

x=0.12500(1ξ)(1η)+0.21651(1+ξ)(1η)+0.15000(1ξ)(1+η)+0.25981(1+ξ)(1+η)y=0.21651(1ξ)(1η)+0.12500(1+ξ)(1η)+0.25981(1ξ)(1+η)+0.15000(1+ξ)(1+η).

Therefore, the derivatives with respect to ξ are

x,ξ=xξ=0.20131+0.018301ηy,ξ=yξ=0.201310.018301η.

Since the blue point is at the center of the element, the values of ξ and η at that point are zero. Therefore, the values of the derivatives at that point are

x,ξ=xξ=0.20131y,ξ=yξ=0.20131.

Therefore,

𝐱,ξ=0.20131𝐞x0.20131𝐞y,𝐱,ξ=0.201312+0.201312=0.28470.

The local laminar basis vector 𝐞^x is given by

𝐞^x=𝐱,ξ𝐱,ξ=0.70711𝐞x0.70711𝐞y.

The laminar basis vector 𝐞^y is given by

𝐞^y=𝐞z×𝐞x^=0.70711𝐞x+0.70711𝐞y.

A plot of the vectors is shown in Figure 13.

File:NFE HW6Prob1 1.png
Figure 13. Laminar base vectors.

The Maple code for this calculation is shown below.

> #
> # Shape functions
> #
> N1m := 1/4*(1-xi)*(1-eta):
> N2m := 1/4*(1+xi)*(1-eta):
> N1p := 1/4*(1-xi)*(1+eta):
> N2p := 1/4*(1+xi)*(1+eta):
> N := linalg[matrix](1,4,[N1m,N2m,N1p,N2p]);
> #
> # Compute local laminar basis vectors at the blue point
> #
> # Isoparametric map
> #
> x := x1m*N1m + x2m*N2m + x1p*N1p + x2p*N2p;
> y := y1m*N1m + y2m*N2m + y1p*N1p + y2p*N2p;
> #
> # Derivative of Isoparametric map
> #
> dx_dxi := diff(x, xi);
> dy_dxi := diff(y, xi);
> #
> # Jacobian evluated at blue point
> #
> dx_dxi_cen := subs(eta=0, dx_dxi);
> dy_dxi_cen := subs(eta=0, dy_dxi);
> #
> # Local laminar basis vectors at the blue point
> #
> norm_dx_dxi_cen := simplify(sqrt(dx_dxi_cen^2 + dy_dxi_cen^2));
> ehat_x := vector([simplify(dx_dxi_cen/norm_dx_dxi_cen),
> simplify(dy_dxi_cen/norm_dx_dxi_cen), 0]);
> ehat_z := vector([0, 0, 1]);
> ehat_y := crossprod(ehat_z, ehat_x);

Template:Subpage navbar