Micromechanics of composites/Balance of angular momentum

From testwiki
Revision as of 18:00, 12 October 2018 by 130.126.255.247 (talk) (โ†’Proof)
(diff) โ† Older revision | Latest revision (diff) | Newer revision โ†’ (diff)
Jump to navigation Jump to search

Template:TOCright

Statement of the balance of angular momentum

The balance of angular momentum in an inertial frame can be expressed as:

Template:Center top
σ=σT
Template:Center bottom

Proof

We assume that there are no surface couples on Ω or body couples in Ω. Recall the general balance equation

ddt[Ωf(๐ฑ,t)dV]=Ωf(๐ฑ,t)[un(๐ฑ,t)๐ฏ(๐ฑ,t)๐ง(๐ฑ,t)]dA+Ωg(๐ฑ,t)dA+Ωh(๐ฑ,t)dV.

In this case, the physical quantity to be conserved the angular momentum density, i.e., f=๐ฑ×(ρ๐ฏ). The angular momentum source at the surface is then g=๐ฑ×๐ญ and the angular momentum source inside the body is h=๐ฑ×(ρ๐›). The angular momentum and moments are calculated with respect to a fixed origin. Hence we have

ddt[Ω๐ฑ×(ρ๐ฏ)dV]=Ω[๐ฑ×(ρ๐ฏ)][un๐ฏ๐ง]dA+Ω๐ฑ×๐ญdA+Ω๐ฑ×(ρ๐›)dV.

Assuming that Ω is a control volume, we have

Ω๐ฑ×[t(ρ๐ฏ)]dV=Ω[๐ฑ×(ρ๐ฏ)][๐ฏ๐ง]dA+Ω๐ฑ×๐ญdA+Ω๐ฑ×(ρ๐›)dV.

Using the definition of a tensor product we can write

[๐ฑ×(ρ๐ฏ)][๐ฏ๐ง]=[[๐ฑ×(ρ๐ฏ)]๐ฏ]๐ง.

Also, ๐ญ=σ๐ง. Therefore we have

Ω๐ฑ×[t(ρ๐ฏ)]dV=Ω[[๐ฑ×(ρ๐ฏ)]๐ฏ]๐งdA+Ω๐ฑ×(σ๐ง)dA+Ω๐ฑ×(ρ๐›)dV.

Using the divergence theorem, we get

Ω๐ฑ×[t(ρ๐ฏ)]dV=Ω[[๐ฑ×(ρ๐ฏ)]๐ฏ]dV+Ω๐ฑ×(σ๐ง)dA+Ω๐ฑ×(ρ๐›)dV.

To convert the surface integral in the above equation into a volume integral, it is convenient to use index notation. Thus,

[Ω๐ฑ×(σ๐ง)dA]i=ΩeijkxjσklnldA=ΩAilnldA=Ω๐‘จ๐งdA

where []i represents the i-th component of the vector. Using the divergence theorem

Ω๐‘จ๐งdA=Ω๐‘จdV=ΩAilxldV=Ωxl(eijkxjσkl)dV.

Differentiating,

Ω๐‘จ๐งdA=Ω[eijkδjlσkl+eijkxjσklxl]dV=Ω[eijkσkj+eijkxjσklxl]dV=Ω[eijkσkj+eijkxj[σ]k]dV.

Expressed in direct tensor notation,

Ω๐‘จ๐งdA=Ω[[โ„ฐ:σT]i+[๐ฑ×(σ)]i]dV

where โ„ฐ is the third-order permutation tensor. Therefore,

[Ω๐ฑ×(σ๐ง)dA]i==Ω[[โ„ฐ:σT]i+[๐ฑ×(σ)]i]dV

or,

Ω๐ฑ×(σ๐ง)dA==Ω[โ„ฐ:σT+๐ฑ×(σ)]dV.

The balance of angular momentum can then be written as

Ω๐ฑ×[t(ρ๐ฏ)]dV=Ω[[๐ฑ×(ρ๐ฏ)]๐ฏ]dV+Ω[โ„ฐ:σT+๐ฑ×(σ)]dV+Ω๐ฑ×(ρ๐›)dV.

Since Ω is an arbitrary volume, we have

๐ฑ×[t(ρ๐ฏ)]=[[๐ฑ×(ρ๐ฏ)]๐ฏ]+โ„ฐ:σT+๐ฑ×(σ)+๐ฑ×(ρ๐›)

or,

๐ฑ×[t(ρ๐ฏ)σρ๐›]=[[๐ฑ×(ρ๐ฏ)]๐ฏ]+โ„ฐ:σT.

Using the identity,

(๐ฎ๐ฏ)=(๐ฏ)๐ฎ+(๐ฎ)๐ฏ

we get

[[๐ฑ×(ρ๐ฏ)]๐ฏ]=(๐ฏ)[๐ฑ×(ρ๐ฏ)]+([๐ฑ×(ρ๐ฏ)])๐ฏ.

The second term on the right can be further simplified using index notation as follows.

[([๐ฑ×(ρ๐ฏ)])๐ฏ]i=[([ρ(๐ฑ×๐ฏ)])๐ฏ]i=xl(ρeijkxjvk)vl=eijk[ρxlxjvkvl+ρxjxlvkvl+ρxjvkxlvl]=(eijkxjvk)(ρxlvl)+ρ(eijkδjlvkvl)+eijkxj(ρvkxlvl)=[(๐ฑ×๐ฏ)(ρ๐ฏ)+ρ๐ฏ×๐ฏ+๐ฑ×(ρ๐ฏ๐ฏ)]i=[(๐ฑ×๐ฏ)(ρ๐ฏ)+๐ฑ×(ρ๐ฏ๐ฏ)]i.

Therefore we can write

[[๐ฑ×(ρ๐ฏ)]๐ฏ]=(ρ๐ฏ)(๐ฑ×๐ฏ)+(ρ๐ฏ)(๐ฑ×๐ฏ)+๐ฑ×(ρ๐ฏ๐ฏ)].

The balance of angular momentum then takes the form

๐ฑ×[t(ρ๐ฏ)σρ๐›]=(ρ๐ฏ)(๐ฑ×๐ฏ)(ρ๐ฏ)(๐ฑ×๐ฏ)๐ฑ×(ρ๐ฏ๐ฏ)+โ„ฐ:σT

or,

๐ฑ×[t(ρ๐ฏ)+ρ๐ฏ๐ฏσρ๐›]=(ρ๐ฏ)(๐ฑ×๐ฏ)(ρ๐ฏ)(๐ฑ×๐ฏ)+โ„ฐ:σT

or,

๐ฑ×[ρ๐ฏt+ρt๐ฏ+ρ๐ฏ๐ฏσρ๐›]=(ρ๐ฏ)(๐ฑ×๐ฏ)(ρ๐ฏ)(๐ฑ×๐ฏ)+โ„ฐ:σT

The material time derivative of ๐ฏ is defined as

๐ฏห™=๐ฏt+๐ฏ๐ฏ.

Therefore,

๐ฑ×[ρ๐ฏห™σρ๐›]=๐ฑ×ρt๐ฏ+(ρ๐ฏ)(๐ฑ×๐ฏ)(ρ๐ฏ)(๐ฑ×๐ฏ)+โ„ฐ:σT.

Also, from the conservation of linear momentum

ρ๐ฏห™σρ๐›=0.

Hence,

0=๐ฑ×ρt๐ฏ+(ρ๐ฏ)(๐ฑ×๐ฏ)+(ρ๐ฏ)(๐ฑ×๐ฏ)โ„ฐ:σT=(ρt+ρ๐ฏ+ρ๐ฏ)(๐ฑ×๐ฏ)โ„ฐ:σT.

The material time derivative of ρ is defined as

ρห™=ρt+ρ๐ฏ.

Hence,

(ρห™+ρ๐ฏ)(๐ฑ×๐ฏ)โ„ฐ:σT=0.

From the balance of mass

ρห™+ρ๐ฏ=0.

Therefore,

โ„ฐ:σT=0.

In index notation,

eijkσkj=0.

Expanding out, we get

σ12σ21=0;σ23σ32=0;σ31σ13=0.

Hence,

σ=σT


Template:Subpage navbar