Nonlinear finite elements/Euler Bernoulli beams

From testwiki
Revision as of 01:48, 30 December 2022 by 128.62.19.114 (talk) (Symmetric Stiffness Matrix)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Euler-Bernoulli Beam

Euler-Bernoulli beam

Displacements

u1=u0(x)zdw0dxu2=0u3=w0(x)

Strains

ε11=εxx=εxx0+zεxx1
εxx0=du0dx+12(dw0dx)2εxx1=d2w0dx2

Strain-Displacement Relations

εij=12(uixj+ujxi)+12(umxiumxj)
ε11=12(u1x1+u1x1)+12(u1x1u1x1+u2x1u2x1+u3x1u3x1)ε22=12(u2x2+u2x2)+12(u1x2u1x2+u2x2u2x2+u3x2u3x2)ε33=12(u3x3+u3x3)+12(u1x3u1x3+u2x3u2x3+u3x3u3x3)ε23=12(u2x3+u3x2)+12(u1x2u1x3+u2x2u2x3+u3x2u3x3)ε31=12(u3x1+u1x3)+12(u1x3u1x1+u2x3u2x1+u3x3u3x1)ε12=12(u1x2+u2x1)+12(u1x1u1x2+u2x1u2x2+u3x1u3x2)

The displacements

u1=u0(x1)x3dw0dx1;u2=0;u3=w0(x1)

The derivatives

u1x1=du0dx1x3d2w0dx12;u1x2=0;u1x3=dw0dx1u2x1=0;u2x2=0;u2x3=0u3x1=dw0dx1;u3x2=0;u3x3=0

von Karman strains

The von Karman strains

ε11=du0dx1x3d2w0dx12+12[(du0dx1x3d2w0dx12)2+(dw0dx1)2]ε22=0ε33=12(dw0dx1)2ε23=0ε31=12(dw0dx1dw0dx1)12[(du0dx1x3d2w0dx12)(dw0dx1)]ε12=0

Equilibrium Equations

Balance of forces

dNxxdx+f(x)=0d2Mxxdx2+q(x)+ddx(Nxxdw0dx)=0

Stress Resultants

Nxx=AσxxdAMxx=AzσxxdA

Constitutive Relations

Stress-Strain equation

σxx=Eεxx

Stress Resultant - Displacement relations

Nxx=Axxεxx0+Bxxεxx1=Axx[du0dx+12(dw0dx)2]Bxxd2w0dx2Mxx=Bxxεxx0+Dxxεxx1=Bxx[du0dx+12(dw0dx)2]Dxxd2w0dx2

Extensional/Bending Stiffness

Axx=AEdAextensional stiffnessBxx=AzEdAextensional-bending stiffnessDxx=Az2EdAbending stiffness

If E is constant, and x-axis passes through centroid

Axx=EAdA=EABxx=EAzdA=0Dxx=EAz2dA=EI

Weak Forms

Axial Equation

xaxbd(δu0)dx[du0dx+12(dw0dx)2]Axxdx=xaxb(δu0)fdx+δu0(xa)Q1+δu0(xb)Q4

where

δu0:=v1Q1:=Nxx(xa)Q4:=Nxx(xb)

Bending Equation

xaxb{d(δw0)dx[du0dx+12(dw0dx)2]dw0dxAxx+d2(δw0)dx2(d2w0dx2)Dxx}dx=xaxb(δw0)qdx+δw0(xa)Q2+δw0(xb)Q5+δθ(xa)Q3+δθ(xb)Q6.

where

δw0:=v2δθ:=dv2dxQ2:=[dMxxdx+Nxxdw0dx]xaQ5:=[dMxxdx+Nxxdw0dx]xbQ3:=Mxx(xa)Q6:=Mxx(xb)

Finite Element Model

File:EulerBeamFE.png
Finite element model for Euler Bernoulli beam
u0(x)=u1ψ1(x)+u2ψ2(x)w0(x)=w1ϕ1(x)+θ1ϕ2(x)+w2ϕ3(x)+θ2ϕ4(x)

where θ=(dw0/dx).

Hermite Cubic Shape Functions

File:HermiteShape.png
Hermite shape functions for beam

Finite Element Equations

[𝐊11𝐊12𝐊21𝐊22][𝐮𝐝]=[𝐅1𝐅2]

where

𝐮=[u1u2]T𝐝=[w1θ1w2θ2]T
𝐊11=2×2;𝐊12=2×4𝐊21=4×2;𝐊22=4×4

Symmetric Stiffness Matrix

Kij11=xaxbAxxdψidxdψjdxdxKij12=12xaxb(Axxdw0dx)dψidxdϕjdxdxKij21=12xaxb(Axxdw0dx)dϕidxdψjdxdxKij22=xaxb{12Axx[du0dx+(dw0dx)2]dϕidxdϕjdx+Dxxd2ϕidx2d2ϕjdx2}dx

Load Vector

Fi1=xaxbψifdx+ψi(xa)Q1+ψi(xb)Q4Fi2=xaxbϕiqdx+ϕi(xa)Q2+ϕi(xb)Q5+dϕidx(xa)Q3+dϕidx(xb)Q6

Newton-Raphson Solution

𝐊(𝐔)𝐔=𝐅

where

U1=u1,U2=u2,U3=d1,U4=d2,U5=d3,U6=d4F1=F11,F2=F21,F3=F12,F4=F22,F5=F32,F6=F42

The residual is

𝐑=𝐊𝐔𝐅.

For Newton iterations, we use the algorithm

𝐔r+1=𝐔r(𝐓r)1𝐑r

where the tangent stiffness matrix is given by

𝐓r=𝐑r𝐔;orTij=RiUj,i=16,j=16.

Tangent Stiffness Matrix

i=12;j=12:Tij11=Kij11i=12;j=14:Tij12=2Kij12i=14;j=12:Tij21=2Kij21i=14;j=14:Tij22=Kij22+12xaxbAxx[du0dx+2(dw0dx)2]dϕidxdϕjdxdx

Load Steps

Recall

Nxx=Axx[du0dx+12(dw0dx)2]Bxxd2w0dx2
  • Divide load into small increments.
F=i=1NΔFi
  • Compute 𝐮 and 𝐝 for first load step,
𝐊(𝐔0)𝐔1=ΔF1
File:EulerBeamStiff.png
Stiffness of Euler-Bernoulli beam.
  • Compute 𝐮 and 𝐝 for second load step,
𝐊(𝐔1)𝐔2=ΔF1+ΔF2
  • Continue until F is reached.

Membrane Locking

Recall

[𝐊11𝐊12𝐊21𝐊22][𝐮𝐝]=[𝐅1𝐅2]

where

Kij11=xaxbAxxdψidxdψjdxdxKij12=12xaxb(Axxdw0dx)dψidxdϕjdxdxKij21=12xaxb(Axxdw0dx)dϕidxdψjdxdxKij22=xaxb{12Axx[du0dx+(dw0dx)2]dϕidxdϕjdx+Dxxd2ϕidx2d2ϕjdx2}dx
File:EulerBeamMembraneLock.png
Mebrane locking in Euler-Bernoulli beam

For Hinged-Hinged

Membrane strain:

εxx0=0

or

du0dx+12(dw0dx)2=0

Hence, shape functions should be such that

du0dx(dw0dx)2

u0 linear, w0 cubic Element Locks! Too stiff.

Selective Reduced Integration

  • Assume u0 is linear ;~~ w0 is cubic.
  • Then du0dxdψidx is constant, and dw0dxdϕidx is quadratic.
  • Try to keep εxx0= constant.
Kij11=xaxbAxxdψidxdψjdxdxKij12=12xaxb(Axxdw0dx)dψidxdϕjdxdxKij22=xaxb{12Axx[du0dx+(dw0dx)2]dϕidxdϕjdx+Dxxd2ϕidx2d2ϕjdx2}dx
  • 𝐊11 integrand is constant, 𝐊12 integrand is fourth-order , 𝐊22 integrand is eighth-order

Full integration

ngauss pt=int[(p+1)/2]+1

Assume Axx = constant.

Kij11=Axxxaxbdψidxdψjdxdx=Axx11(J1dψi(ξ)dξ)(J1dψj(ξ)dξ)Jdξ=Axx11F(ξ)dξAxxW1F(ξ1)one-point integration
Kij12=12xaxb(Axxdw0dx)dψidxdϕjdxdx=Axx211(i=14wiJ1dϕi(ξ)dξ)(J1dψi(ξ)dξ)(J1dϕj(ξ)dξ)dxAxx[W1F(ξ1)+W2F(ξ2)+W3F(ξ3)]full integrationAxx[W1F(ξ1)+W2F(ξ2)]reduced integration

Template:Subpage navbar