Nonlinear finite elements/Kinematics

From testwiki
Revision as of 22:23, 11 June 2021 by imported>DanCherek (โ†’Derivative of J with respect to the deformation gradient: grammar)
(diff) โ† Older revision | Latest revision (diff) | Newer revision โ†’ (diff)
Jump to navigation Jump to search

Strain Measures in three dimensions

File:Motion3D.png
The motion of a body

Initial orthonormal basis:

(๐‘ฌ1,๐‘ฌ2,๐‘ฌ3)

Deformed orthonormal basis:

(๐ž1,๐ž2,๐ž3)

We assume that these coincide.

Motion

๐ฑ=φ(๐—,t)=๐ฑ(๐—,t)

Deformation Gradient

๐‘ญ=φ๐—=oφ=๐ฑ๐—=Xφ

Effect of ๐‘ญ:

d๐ฑ1=๐‘ญd๐—1;d๐ฑ2=๐‘ญd๐—2

Dyadic notation:

๐‘ญ=FiJ๐ži๐‘ฌJ

Index notation:

FiJ=xiXJ

The determinant of the deformation gradient is usually denoted by J and is a measure of the change in volume, i.e.,

J=det๐‘ญ

Push Forward and Pull Back

Forward Map:

๐ฑ=φ(๐—,t)

Forward deformation gradient:

๐‘ญ=๐ฑ๐—=oφ

Dyadic notation:

๐‘ญ=i,J=13xiXJ๐ži๐‘ฌJ

Effect of deformation gradient:

d๐ฑ=๐‘ญd๐—=φ*[d๐—]

Push Forward operation:

φ*[]
  • d๐— = material vector.
  • d๐ฑ = spatial vector.

Inverse map:

๐—=φ1(๐ฑ,t)

Inverse deformation gradient:

๐‘ญ1=๐—๐ฑ=φ1

Dyadic notation:

๐‘ญ1=i,J=13XIxj๐‘ฌI๐žj

Effect of inverse deformation gradient:

d๐—=๐‘ญ1d๐ฑ=φ*[d๐ฑ]

Pull Back operation:

φ*[]
  • d๐— = material vector.
  • d๐ฑ = spatial vector.
Example
File:PushPullExample.png
Push forward and pull back

Motion:

x1=14(18+4X1+6X2)x2=14(14+6X2)

Deformation Gradient:

Fij=xiXj๐…=12[2303]

Inverse Deformation Gradient:

๐…1=13[3302]

Push Forward:

φ*[๐‘ฌ1]=๐…[10]=[10]φ*[๐‘ฌ2]=๐…[01]=[1.51.5]

Pull Back:

φ*[๐ž1]=๐…1[10]=[10]φ*[๐ž2]=๐…1[01]=[12/3]

Cauchy-Green Deformation Tensors

Right Cauchy-Green Deformation Tensor

Recall:

d๐ฑ1=๐‘ญd๐—1;d๐ฑ2=๐‘ญd๐—2

Therefore,

d๐ฑ1d๐ฑ2=(๐‘ญd๐—1)(๐‘ญd๐—2)

Using index notation:

d๐ฑ1d๐ฑ2=(FijdXj1)(FikdXk2)=dXj1(FijFik)dXk2=d๐—1(๐‘ญT๐‘ญ)d๐—2=d๐—1๐‘ชd๐—2

Right Cauchy-Green tensor:

๐‘ช=๐‘ญT๐‘ญ

Left Cauchy-Green Deformation Tensor

Recall:

d๐—1=๐‘ญ1d๐ฑ1;d๐—2=๐‘ญ1d๐ฑ2

Therefore,

d๐—1d๐—2=(๐‘ญ1d๐ฑ1)(๐‘ญ1d๐ฑ2)

Using index notation:

d๐—1d๐—2=(Fij1dxj1)(Fik1dxk2)=dxj1(Fij1Fik1)dxk2=d๐ฑ1(๐‘ญT๐‘ญ1)d๐ฑ2=d๐ฑ1(๐‘ญ๐‘ญT)1d๐ฑ2=d๐ฑ1๐›1d๐ฑ2

Left Cauchy-Green (Finger) tensor:

๐›=๐‘ญ๐‘ญT

Strain Measures

Green (Lagrangian) Strain

12(d๐ฑ1d๐ฑ2d๐—1d๐—2)=12d๐—1(๐‘ช๐‘ฐ)d๐—2=d๐—1๐‘ฌd๐—2

Green strain tensor:

๐‘ฌ=12(๐‘ช๐‘ฐ)=12(๐‘ญT๐‘ญ๐‘ฐ)=12[o๐ฎ+(o๐ฎ)T+o๐ฎ(๐’๐ฎ)๐‘ป]

Index notation:

Eij=12(FkiFkjδij)=12(uiXj+ujXi+ukXiukXj)

Almansi (Eulerian) Strain

12(d๐ฑ1d๐ฑ2d๐—1d๐—2)=12d๐ฑ1(๐‘ฐ๐›1)d๐ฑ2=d๐ฑ1๐žd๐ฑ2

Almansi strain tensor:

๐ž=12(๐‘ฐ๐›1)=12(๐‘ฐ๐‘ญT๐‘ญ1)

Index notation:

eij=12(δijFki1Fkj1)

Push Forward and Pull Back

Recall:

d๐ฑ1๐žd๐ฑ2=d๐—1๐‘ฌd๐—2

Now,

d๐ฑ1๐žd๐ฑ2=(๐‘ญd๐—1)๐ž(๐‘ญd๐—2)=d๐—1(๐‘ญT๐ž๐‘ญ)d๐—2=d๐—1๐‘ฌd๐—2

Therefore,

๐‘ฌ=๐‘ญT๐ž๐‘ญ๐ž=๐‘ญT๐‘ฌ๐‘ญ1

Push Forward:

๐ž=φ*[๐‘ฌ]=๐‘ญT๐‘ฌ๐‘ญ1

Pull Back:

๐‘ฌ=φ*[๐ž]=๐‘ญT๐ž๐‘ญ

Some useful results

Derivative of J with respect to the deformation gradient

We often need to compute the derivative of J=det๐‘ญ with respect to the deformation gradient ๐‘ญ. From tensor calculus we have, for any second order tensor ๐‘จ

๐‘จ(det๐‘จ)=det๐‘จ๐‘จT

Therefore,

Template:Center top

J๐‘ญ=J๐‘ญT

Template:Center bottom

Derivative of J with respect to the right Cauchy-Green deformation tensor

The derivative of J with respect to the right Cauchy-Green deformation tensor (๐‘ช) is also often encountered in continuum mechanics.

To calculate the derivative of J=det๐‘ญ with respect to ๐‘ช, we recall that (for any second order tensor ๐‘ป)

๐‘ช๐‘ญ:๐‘ป=๐‘ญ(๐‘ญT๐‘ญ):๐‘ป=(๐–จT:๐‘ป)๐‘ญ+๐‘ญT(๐–จ:๐‘ป)=๐‘ปT๐‘ญ+๐‘ญT๐‘ป

Also,

J๐‘ญ:๐‘ป=J๐‘ช:(๐‘ช๐‘ญ:๐‘ป)=J๐‘ช:(๐‘ปT๐‘ญ+๐‘ญT๐‘ป)=[๐‘ญJ๐‘ช]:๐‘ป+[๐‘ญ(J๐‘ช)T]:๐‘ป

From the symmetry of ๐‘ช we have

J๐‘ช=(J๐‘ช)T

Therefore, involving the arbitrariness of ๐‘ป, we have

J๐‘ญ=2๐‘ญJ๐‘ช

Hence,

J๐‘ช=12๐‘ญ1J๐‘ญ.

Also recall that

J๐‘ญ=J๐‘ญT

Therefore,

Template:Center top

J๐‘ช=12J๐‘ญ1๐‘ญT=J2๐‘ช1

Template:Center bottom

In index notation,

Derivative of the inverse of the right Cauchy-Green tensor

Another result that is often useful is that for the derivative of the inverse of the right Cauchy-Green tensor (๐‘ช).

Recall that, for a second order tensor ๐‘จ,

๐‘จ1๐‘จ:๐‘ป=๐‘จ1๐‘ป๐‘จ1

In index notation

Aij1AklTkl=BijklTkl=Aik1TklAlj1

or,

Aij1Akl=Bijkl=Aik1Alj1

Using this formula and noting that since ๐‘ช is a symmetric second order tensor, the derivative of its inverse is a symmetric fourth order tensor we have

Template:Center top

CIJ1CKL=12(CIK1CJL1+CJK1CIL1)

Template:Center bottom

Template:Subpage navbar