University of Florida/Egm6341/s10.team3.aks/HW5

From testwiki
Revision as of 22:17, 6 March 2022 by imported>Dave Braunschweig (Remove math tags from headings)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

(5) Derive Trapezoidal Error expression

Ref: Lecture Notes p.28-1

Problem Statement

Derive equation 1 from Lecture Notes p.27-1

Solution

We have

E=r=1lP(2r)(+1)[g(2r1)g(2r1)(1)]1+1P(2l)(t)g(2l)(t)dt]

and gki(t)=(h2)ifi(x(t))

g(2r1)(t)=(h2)(2r1)f(2r1)(x(t))

g(2r1)(+1)=(h2)(2r1)f(2r1)(x(1))

and x(1)=b

g(2r1)(+1)=(h2)(2r1)f(2r1)(b)

Similarly

g(2r1)(1)=(h2)(2r1)f(2r1)(a)

and g(2l)=(h2)(2l)f(2l)(x)

using above equations into first equation we obtain

E=r=1lP(2r)(+1)h2h2)(2r1)[f(2r1)(b)f(2r1)(a)]k=1n11+1P(2l)(tk)(h2)2lf(2l)(x)dx]

=r=1lh2rP(2r)(+1)22r[f(2r1)(b)f(2r1)(a)](h2)2lk=1n1xkxk+1P(2l)(tk(x))f(2l)(x)dx]

but P(2r)(+1)22r=d2r

So finally we obtain

=r=1lh2rd2r[f(2r1)(b)f(2r1)(a)](h2)2lk=1n1xkxk+1P(2l)(tk(x))f(2l)(x)dx]

(8) Obtain expressions for (P2,P3),(P4,P5),(P6,P7) Using recurrence formula

Ref: Lecture Notes p.29-3

Problem Statement

Obtain expressions for (P2,P3),(P4,P5),(P6,P7) using eq (6) Lecture Notes p.29-2

Solution

(P2,P3)

P2i(t)=j=0iC2j+1t2(ij)(2(ij))!

P2(t)=j=0iC2j+1t2(1j)(2(1j))!

P2(t)=C1t2)2!+C3

Using eq (6) from Lecture Notes p.29-3 , we obtain

C13!+C3=0

C3=C13!

=13!=16

so P2(t)=t22+16

P3=j=0iC2j+1t2(i1)(2(ij))!+C2i+2

where C2i+2=0

P3=C1t3!+C3t1!

where C1=1andC3=16 from previous result

P3=t3!+t6=0

P4,P5

P4=C1t44!+C3t22!+C5

Using eq (6) from Lecture Notes p.29-3 , we obtain

C15!+C33!+C51!=0

C5=15!136=7360

P4=t424+t2127360

P5=C1t35!+C3t33!+C5t31!

P5=(C15!+C33!+C51!)t3

P5=0

P6,P7

P6=C1t612!+C3t410!+C5t28!+C716!

By using eq 6 from Lecture Notes p.29-3 , we obtain

C17!+C35!+C53!+C7=0

C7=17!16!72160

=1115120

P6=t612!+t46*10!7t2360*8!+1115120

P7=C1t57!+C3t55!+C5t53!+C7t51!

P7=(C17!+C35!+C53!+C71!)t5

P7=0*t5

P7=0

Template:CourseCat