File:Late glacial temperature curve1.jpg

From testwiki
Jump to navigation Jump to search
Original file (1,600 × 766 pixels, file size: 344 KB, MIME type: image/jpeg)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description Temperature curve of late glacial period, from NGRIP greenland ice core oxygen isotope ratio. Numbers thousands of years ago, time goes from right to left, up is warmer, down is colder. The periot spans from Lascaux interstadial to Heinrich event H1, and to Meiendorf/Bölling warm stage, and Allegöd warm stage, to Younger dryas and early holocene.
Date 3 December 2007 (upload date)
Source Own work
Author Merikanto


Additional info

Source of data is

http://www.iceandclimate.nbi.ku.dk/data/ http://www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls

δ18O values and dust concentrations


The dataset provides NGRIP δ18O values, dust concentrations, and GICC05 ages in 5cm depth resolution for the period 0-60 ka (δ18O) and 10-60 ka (dust).

The dataset accompany the following papers:

NGRIP members, Nature, 431, 147-151, 2004. DOI: 10.1038/nature02805

Gkinis et al., Earth Planet. Sci. Lett., 405, 132-141, 2014. DOI: 10.1016/j.epsl.2014.08.022

Ruth et al., J. Geophys. Res., 108, 4098, 2003. DOI: 4010.1029/2002JD002376


Python code

    1. drawing climate diagram in python 3
    2. version 2.11
    3. 11.9.2020


import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import interpolate from matplotlib.ticker import (MultipleLocator, AutoMinorLocator) import scipy.signal

def running_mean(x, N):

   cumsum = np.cumsum(np.insert(x, 0, 0)) 
   return (cumsum[N:] - cumsum[:-N]) / float(N)


datafilename="ngrip1.csv" captioni="Late Glacial period in NGRIP ice core" savename="ngrip_dryas.svg"

figsizex=16 figsizey=8

  1. x = []
  2. y = []
  3. y2= []


dfin0=pd.read_csv(datafilename, sep=";")

lst1=['gicc05_age','delta_O18']

dfin1 = dfin0[dfin0.columns.intersection(lst1)]

x0=dfin1['gicc05_age'] y0=dfin1['delta_O18']

  1. y20=dfin1['GISP_dO18']
  2. y30=dfin1['GISP2_dO18']


x=np.array(x0) y=np.array(y0)

  1. y2=np.array(y20)
  2. y3=np.array(y30)
  1. list1=[]
  1. list1.append(y)
  2. list1.append(y2)
  3. list1.append(y3)
  1. data1=np.array(list1)
  1. print (np.shape(data1))
  1. data_avg1=np.average(data1, axis=0)
  1. print(x)
  2. print(y)
  1. quit(0)

size0=14 size1=16 size2=18 size3=24


  1. y_savgol = scipy.signal.savgol_filter(y,31, 3)

y_savgol = scipy.signal.savgol_filter(y,71, 3)


  1. y_running = running_mean(y, 31)


x_sm = np.array(x) y_sm = np.array(y) x_smooth = np.linspace(x_sm.min(), x_sm.max(), 20000) funk1 = interpolate.interp1d(x_sm, y_sm, kind="cubic") y_smooth = funk1(x_smooth)


fig, ax1 = plt.subplots()


  1. ax1.axis((11600,14000,0,ymax1))

ax1.set_xlim(10000,17000) ax1.set_ylim(-32.0, -45.0)

  1. ax1.set_ylim(-35.0, -42.0)

plt.gca().invert_xaxis() plt.gca().invert_yaxis()

ax1.set_ylabel('delta-O18', color='#0000ff', fontsize=size2+2)


ax1.plot(x,y, color="#ffb0b0", linewidth=1,label="NGRIP delta-O18")

  1. ax1.plot(x_smooth,y_smooth, color="#0000ff", linewidth=3,label="NGRIP delta-O18")

ax1.plot(x,y_savgol, color="#FF0000", linewidth=4, label="SavGol filter, 71 and 3")

  1. ax1.plot(x,y_running, color="#FF0000", linewidth=3)


  1. ax1.plot(x,data_avg1, color="#ff0000", linewidth=2, linestyle=":", label="Average of NGRIP, GISP, GISP2 delta-O18")


ax1.tick_params(axis='both', which='major', labelsize=size2)

ax1.xaxis.set_minor_locator(MultipleLocator(500)) ax1.xaxis.set_minor_locator(MultipleLocator(50))

ax1.yaxis.set_minor_locator(MultipleLocator(1.0)) ax1.yaxis.set_minor_locator(MultipleLocator(0.1))

ax1.grid(which='major', linestyle='-', linewidth='0.1', color='black') ax1.grid(which='minor', linestyle=':', linewidth='0.1', color='black')


ax1.set_xlabel('Age BP', color="darkgreen", fontsize=size2)


ax1.set_title(captioni, fontsize=size3, color="#0000af")

plt.legend(fontsize=size0)

fig = plt.gcf() fig.set_size_inches(figsizex, figsizey, forward=True)


plt.savefig(savename, format="svg", dpi = 100)

plt.show()


Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

3 December 2007

image/jpeg

352,251 B

766 pixel

1,600 pixel

f30962c5b5e467ac799ba2d9401821c63e7eda2c

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:25, 12 September 2020Thumbnail for version as of 18:25, 12 September 20201,600 × 766 (344 KB)wikimediacommons>MerikantoNew data and layoyut

The following page uses this file: