University of Florida/Egm4313/s12.team11.imponenti/R3.8

From testwiki
Jump to navigation Jump to search

Problem 3.8

solved by Luca Imponenti

Kreyszig 2011 pg.84 problem 5

Problem Statement

Find a (real) general solution. State which rule you are using. Show each step of your work.

y+4y+4y=excos(x)

Homogeneous Solution

To find the homogeneous solution, yh, we must find the roots of the equation

λ2+4λ+4=0

(λ+2)(λ+2)=0

λ=2

We know the homogeneous solution for the case of a double root to be

yh=c1eλx+c2xeλx

yh=c1e2x+c2xe2x

Particular Solution

We have the following excitation

r(x)=excos(x)

From table 2.1, K 2011, pg. 82, we have

yp(x)=ex[Kcos(x)+Msin(x)]

Since this does not correspond to our homogeneous solution we can use the Basic Rule (a), K 2011, pg. 81 to solve for the particular solution

yp+4yp+4yp=r(x)

where

yp=ex[Ksin(x)+Mcos(x)]ex[Kcos(x)+Msin(x)]

yp=ex[Ksin(x)+Mcos(x)Kcos(x)Msin(x)]

and

yp=ex[Kcos(x)Msin(x)+Ksin(x)Mcos(x)]ex[Ksin(x)+Mcos(x)Kcos(x)Msin(x)]

yp=ex[Kcos(x)Msin(x)+Ksin(x)Mcos(x)+Ksin(x)Mcos(x)+Kcos(x)+Msin(x)]

yp=ex[2Ksin(x)2Mcos(x)]

Plugging these equations back into the differential equation

yp+4yp+4yp=r(x)

ex[2Ksin(x)2Mcos(x)]+4ex[Ksin(x)+Mcos(x)Kcos(x)Msin(x)]+4ex[Kcos(x)+Msin(x)]=excos(x)

ex[2Ksin(x)2Mcos(x)4Ksin(x)+4Mcos(x)4Kcos(x)4Msin(x)+4Kcos(x)+4Msin(x)]=excos(x)

2Mcos(x)2Ksin(x)=cos(x)

from the above equation it is obvious that K=0 and M=12

therefore the particular solution to the differential equation is

yp(x)=12exsin(x)

General Solution

The general solution will be the summation of the homogeneous and particular solutions

y(x)=yh(x)+yp(x)

y(x)=c1e2x+c2xe2x+12exsin(x)

   y(x)=e2x(c1+c2x)+12exsin(x)

The coefficients c1 and c2 can be readily solved for given either initial conditions or boundary value conditions.

Kreyszig 2011 pg.84 problem 6

Problem Statement

Find a (real) general solution. State which rule you are using. Show each step of your work.

y+y+(π2+14)y=ex2sin(πx)

Homogeneous Solution

To find the homogeneous solution, yh, we must find the roots of the equation

λ2+λ+(π2+14)=0

λ=b±b24ac2a with a=1,b=1,c=(π2+14)

λ=1±124*1*(π2+14)2*1

λ=α±iω=12±πi

We know the homogeneous solution for the case of a double root to be

yh=eαx[Acos(ωx)+Bsin(ωx)]

yh=ex2[Acos(πx)+Bsin(πx)]

Particular Solution

We have the following excitation

r(x)=ex2sin(πx)

From table 2.1, K 2011, pg. 82, we have

yp(x)=ex2[Kcos(πx)+Msin(πx)]

Since this corresponds to our homogeneous solution we must use the Modification Rule (b), K 2011, pg. 81 to solve for the particular solution

so yp(x)=xex2[Kcos(πx)+Msin(πx)]

differentiating

yp=πxex2[Ksin(πx)+Mcos(πx)]+(ex212xex2)[Kcos(πx)+Msin(πx)]

yp=ex2(πx[Ksin(πx)+Mcos(πx)]+(112x)[Kcos(πx)+Msin(πx)])

yp=ex2[πxKsin(πx)+πxMcos(πx)+Kcos(πx)+Msin(πx)12xKcos(πx)12xMsin(πx)]

and

yp=ex2[π2xKcos(πx)πKsin(πx)π2xMsin(πx)+πMcos(πx)πKsin(πx)+πMcos(πx)+12πxKsin(πx)12Kcos(πx)12πxMcos(πx)12Msin(πx)]12ex2[πxKsin(πx)+πxMcos(πx)+Kcos(πx)+Msin(πx)12xKcos(πx)12xMsin(πx)]

yp=ex2[π2xKcos(πx)πKsin(πx)π2xMsin(πx)+πMcos(πx)πKsin(πx)+πMcos(πx)+12πxKsin(πx)12Kcos(πx)12πxMcos(πx)12Msin(πx)+12πxKsin(πx)12πxMcos(πx)12Kcos(πx)12Msin(πx)+14xKcos(πx)+14xMsin(πx)]

grouping cosine and sine terms we get

yp=ex2[(2πMπxM+(14π2)xKK)cos(πx)+((14π2)xMM+πxK2πK)sin(πx)]

and

yp=ex2[(πxM+K12xK)cos(πx)+(πxK+M12xM)sin(πx)]

next we substitute the above equations into the ODE

yp+yp+(π2+14)yp=r(x)

ex2[(2πMπxM+(14π2)xKK)cos(πx)+((14π2)xMM+πxK2πK)sin(πx)]+ex2[(πxM+K12xK)cos(πx)+(πxK+M12xM)sin(πx)]+(π2+14)xex2[Kcos(πx)+Msin(πx)]=ex2sin(πx)

ex2[(2πMπxM+(14π2)xKK)cos(πx)+((14π2)xMM+πxK2πK)sin(πx)+(πxM+K12xK)cos(πx)+(πxK+M12xM)sin(πx)+(π2+14)x(Kcos(πx)+Msin(πx))]=ex2sin(πx)

ex2[(2πMπxM+(14π2)xKK+πxM+K12xK+(π2+14)xK)cos(πx)+((14π2)xMM+πxK2πKπxK+M12xM+(π2+14)xM)sin(πx)]=ex2sin(πx)

2πMcos(πx)2πKsin(πx)=sin(πx)

after cancelling terms; we can equate cosine and sine coefficients to get two equations

2πM=0

2πK=1

so M=0 and K=12π

and the particular solution to the ODE is

yp(x)=12πxex2cos(πx)

General Solution

The general solution will be the summation of the homogeneous and particular solutions

y=yh+yp

y=ex2[Acos(πx)+Bsin(πx)]12πxex2cos(πx)

   y=ex2[Acos(πx)+Bsin(πx)12πxcos(πx)]

Egm4313.s12.team11.imponenti 04:28, 21 February 2012 (UTC)

Template:CourseCat