University of Florida/Egm4313/s12.team11.imponenti/R7.3

From testwiki
Jump to navigation Jump to search

R7.3

Problem Statement

Find (a) the scalar product, (b) the magnitude of f and g ,(c) the angle between f and g for:

1) f(x)=cos(x), g(x)=x for2x10

2) f(x)=12(3x21), g(x)=12(5x33x) for1x1

Part 2

solved by Luca Imponenti

Scalar Product

<f,g>=abf(x)g(x) dx

<f,g>=11[12(3x21)][12(5x33x)] dx

=1114(15x54x3+3x) dx
=14(156x6x4+32x2)|11
=14[(1561614+3212)(156(1)6(1)4+32(1)2)]

Since all exponents are even, everything in brackets cancels out

                      <f,g>=0
Magnitude

f=<f,f>1/2=abf2(x) dx

=11[12(3x21)]2 dx
=1114(9x46x2+1) dx
=14(95x52x3+x)|11
=14[(95152(1)3+1)(95(1)52(1)3+(1))]
=14[45(45)]
                       f=25

g=abg2(x) dx

=11[12(5x33x)]2 dx
=1114(25x630x4+9x2) dx
=14(257x76x5+3x3)|11
=14[(257176(1)5+3(1)3)(257(1)76(1)5+3(1)3)]
=14[47(47)]
                       g=27
Angle Between Functions

cos(θ)=<f,g>fg

Since <f,g>=0 the two functions are orthogonal

                         θ=90

Template:CourseCat