University of Florida/Egm4313/s12.team13.steinberg.r1

From testwiki
Jump to navigation Jump to search

R1.5A

Problem Statement

4.) Find the general solution to the following ODE and check the result by substitution.

y+4y+(π2+4)y=0

Solution

The homogeneous characteristic equation for linear 2nd order ODE's with constant coefficients is

λ2+aλ+b=0

(5.1)

For the ODE in this problem, the characteristic equation becomes

λ2+4λ+(π2+4)=0

To solve for the solutions, the discriminant to the quadratic equation must first be calculated.

Δ=a24b

(5.2)

Δ=164(π2+4) =164π216 =4π2

Since the discriminant is negative, there will be two imaginary solutions to the ODE. The solutions can be obtained by solving the remainder of the quadratic formula.

λ1,2=a±a24b2

(5.3)

λ1,2=4±4π22 =4±2πi2 =2±πi

Therefore,

λ1=2+πi

(5.4)

λ2=2πi

(5.5)

The two distinct, linearly independent, homogeneous solutions for the case with two imaginary roots are

yh,1(x)=ea1xcosb1x

(5.6)

yh,2(x)=ea2xsinb2x

(5.7)

The homogeneous solution is

yh=c1yh,1+c2yh,2

(5.8)

yh(x)=c1ea1xcosb1x+c2ea2xsinb2x

yh(x)=c1e2xcosπx+c2e2xsinπx

The final general solution is therefore

yh(x)=e2x(c1cosπx+c2sinπx)

(5.9)

To check this result using substitution, we must take the first and second derivatives of the general solution to substitute back into the original ODE.

y(x)=2e2x(c1cosπx+c2sinπx)+e2x(πc1sinπx+πc2cosπx)

(5.10)

y(x)=4e2x(c1cosπx+c2sinπx)2e2x(πc1sinπx+πc2cosπx)2e2x(πc1sinπx+πc2cosπx)+e2x(π2c1cosπxπ2c2sinπx)

(5.11)

=4e2x(c1cosπx+c2sinπx)4e2x(πc1sinπx+πc2cosπx)+e2x(π2c1cosπxπ2c2sinπx)

Substituting back into the original ODE gives

y+4y+(π2+4)y=0

(5.12)

4e2x(c1cosπx+c2sinπx)4e2x(πc1sinπx+πc2cosπx)0+e2x(π2c1cosπxπ2c2sinπx)8e2x(c1cosπx+c2sinπx)+4e2x(πc1sinπx+πc2cosπx)0+(π2+4)(e2x)(c1cosπx+c2sinπx)=0

4e2x(c1cosπx+c2sinπx)0+e2x(π2c1cosπxπ2c2sinπx)0+(π2+4)(e2x)(c1cosπx+c2sinπx)0=0

Since all terms cancel to 0, y(x)=e2x(c1cosπx+c2sinπx) is a general solution to the original ODE.

Section 2 Lecture Notes

Template:CourseCat