University of Florida/Eml5526/s11.team2.reiss.HW

From testwiki
Jump to navigation Jump to search

Template:Big3


Given

Consider the family of functions

={1,cos(ωx),cos(2ωx),sin(ωx),sin(2ωx)}

(4.1)

on the interval [0,T], where T=2Π/ω

Find

A) Construct Γ() and observe its properties
B) Find det[Γ()]
C) Is an orthogonal basis

Solution

Construct Γ():

Γ()=(<b1,b1><b1,bn><bn,b1><bn,bn>)

(4.2)

where

b1=1b2=cos(ωx)b3=cos(2ωx)b4=sin(ωx)b5=sin(2ωx)

In order to construct the matrix we must first define <bi,bj>

<bi,bj>=x0xbi(x)bj(x)dx

(4.3)

Because multiplication of continuous functions is communicative it can be shown from equation 4.3 that

<bi,bj>=<bj,bi>

(4.4)

And therefore Γ() is a symmetric matrix

We must now evaluate the terms of the matrix

<b1,b1>=<b1,b1>=0T11dx=x|0T=T<b1,b2>=<b2,b1>=0T1cos(ωx)dx=1ωsin(ωx)|0T=0<b1,b3>=<b3,b1>=0T1cos(2ωx)dx=12ωsin(2ωx)|0T=0<b1,b4>=<b4,b1>=0T1sin(ωx)dx=1ωcos(ωx)|0T=0<b1,b5>=<b5,b1>=0T1sin(2ωx)dx=12ωcos(2ωx)|0T=0<b2,b2>=<b2,b2>=0Tcos(ωx)cos(ωx)dx=(sin(2ωx)4ω+x2)|0T=T2<b2,b3>=<b3,b2>=0Tcos(ωx)cos(2ωx)dx=(3sin(ωx)+sin(3ωx)6ω)|0T=0<b2,b4>=<b4,b2>=0Tcos(ωx)sin(ωx)dx=cos2(ωx)2ω|0T=0<b2,b5>=<b5,b2>=0Tcos(ωx)sin(2ωx)dx=2cos3(ωx)3ω|0T=0<b3,b3>=<b3,b3>=0Tcos(2ωx)cos(2ωx)dx=(sin(4ωx)8ω+x2)|0T=T2<b3,b4>=<b4,b3>=0Tcos(2ωx)sin(ωx)dx=cos(3ωx)3cos(ωx)6ω|0T=0<b3,b5>=<b5,b3>=0Tcos(2ωx)sin(2ωx)dx=cos(4ωx)8ω|0T=0<b4,b4>=<b4,b4>=0Tsin(ωx)sin(ωx)dx=(sin(2ωx)4ω+x2)|0T=T2<b4,b5>=<b5,b4>=0Tsin(ωx)sin(2ωx)dx=(2sin3(ωx)3ω)|0T=0<b5,b5>=<b5,b5>=0Tsin(2ωx)sin(2ωx)dx=(sin(4ωx)8ω+x2)|0T=T2

All values were checked with Wolframalpha

The Gram matrix then becomes

Γ()=(T00000T200000T200000T200000T2)

(4.5)

As we can see the Gram matrix based constructed from this set of functions is a diagonal matrix

Finding det[Γ()]

The determinant of a diagonal matrix is

det(A)=i=1naii

(4.6)

Where

Anxn=(a1100ann)


Based on equation 4.6

det[Γ()]=TT2T2T2T2=T516

(4.7)

For the set to be an orthogonal basis the Gram matrix must be a diagonal matrix with a non-zero determinant. As we can see from equations 4.5 and 4.7 both of these criteria are satisfied. Thus the set of functions is an orthogonal basis.

Template:CourseCat