PlanetPhysics/Vector Identities: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Dave Braunschweig
m Cleanup
 
(No difference)

Latest revision as of 19:01, 12 September 2020

It is difficult to get anywhere in physics without a firm understanding of [[../Vectors/|vectors]] and their common [[../Cod/|operations]]. Here, we will give vector identities as a reference. Basic terminology to keep straight.

{\mathbf Operation} {\mathbf Symbol}

[[../Gradient/|Gradient]] || f

[[../LaplaceOperator/|Laplacian]] 2
[[../DivergenceOfAVectorField/|divergence]]
[[../Curl/|curl]] ×

{\mathbf [[../Vector/|Vector Magnitude]]

A=|𝐀|=Ax2+Ay2+Az2\\ A=𝐀𝐀

{\mathbf [[../DotProduct/|scalar product]] (Dot Product)}

𝐀𝐁=AxBx+AyBy+AzBz \\ 𝐀𝐁=|𝐀||𝐁|cosθ

{\mathbf [[../VectorProduct/|vector product]] (Cross Product)}

𝐀×𝐁=(AyBzAzBy)𝐢^+(AzBxAxBz)𝐣^+(AxByAyBx)𝐤^

It can be easier to remember with [[../Determinant/|determinant]] formulation

</math> \mathbf{A} \times \mathbf{B} = \left| \begin{matrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{matrix}\right| = \left ( A_y B_z - A_z B_y \right ) \mathbf{\hat{i}} + \left ( A_z B_x - A_x B_z \right ) \mathbf{\hat{j}} + \left ( A_x B_y - A_y B_x \right ) \mathbf{\hat{k}}[[../BACKCAB/|VectorTripleProduct]],aka.BACCAB<math>𝐀×(𝐁×𝐂)=𝐁(𝐀𝐂)𝐂(𝐀𝐁)

{\mathbf [[../Vectors/|scalar]] Triple Product}

𝐀(𝐁×𝐂)=𝐁(𝐂×𝐀)=𝐂(𝐀×𝐁)

{\mathbf [[../Gradient/|Gradient]]}

f=fx𝐢^+fy𝐣^+fz𝐤^

{\mathbf Gradient [[../Cod/|identities]]}

(f+g)=f+g \\ (αf)=αf \\ (fg)=fg+gf \\ (f/g)=(gffg)g2 \\

{\mathbf [[../Divergence/|Divergence]]}

</math> \nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} +\frac{\partial A_z}{\partial z} 𝐃ivergenceofthecrossproduct<math>(𝐀×𝐁)=𝐁(×𝐀)𝐀(×𝐁)

{\mathbf Divergence of the curl}

(×𝐀)=0

{\mathbf Laplacian Identities}

×(×𝐀)=(𝐀)2𝐀

Template:CourseCat