PlanetPhysics/Vector Identities
It is difficult to get anywhere in physics without a firm understanding of [[../Vectors/|vectors]] and their common [[../Cod/|operations]]. Here, we will give vector identities as a reference. Basic terminology to keep straight.
| {\mathbf Operation} | {\mathbf Symbol}
[[../Gradient/|Gradient]] || |
| [[../LaplaceOperator/|Laplacian]] | |
| [[../DivergenceOfAVectorField/|divergence]] | |
| [[../Curl/|curl]] |
{\mathbf [[../Vector/|Vector Magnitude]]
\\
{\mathbf [[../DotProduct/|scalar product]] (Dot Product)}
\\
{\mathbf [[../VectorProduct/|vector product]] (Cross Product)}
It can be easier to remember with [[../Determinant/|determinant]] formulation
</math> \mathbf{A} \times \mathbf{B} = \left| \begin{matrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{matrix}\right| = \left ( A_y B_z - A_z B_y \right ) \mathbf{\hat{i}} + \left ( A_z B_x - A_x B_z \right ) \mathbf{\hat{j}} + \left ( A_x B_y - A_y B_x \right ) \mathbf{\hat{k}}
{\mathbf [[../Vectors/|scalar]] Triple Product}
{\mathbf [[../Gradient/|Gradient]]}
{\mathbf Gradient [[../Cod/|identities]]}
\\ \\ \\ \\
{\mathbf [[../Divergence/|Divergence]]}
</math> \nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} +\frac{\partial A_z}{\partial z}
{\mathbf Divergence of the curl}
{\mathbf Laplacian Identities}