Elasticity/Kinematics example 3: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Dave Braunschweig
 
(No difference)

Latest revision as of 02:38, 5 October 2021

Example 3

Given:

Unit square (X1,X2)[0,1] with displacement fields :

  1. 𝐮=κX2𝐞^1+κX1𝐞^2.
  2. 𝐮=κX2𝐞^1+κX1𝐞^2.
  3. 𝐮=κX12𝐞^2.

Sketch: Deformed configuration in x1,x2 plane.

Solution

The displacement 𝐮=𝐱𝐗. Hence, 𝐱=𝐮+𝐗. In the reference configuration, 𝐮=0 and 𝐱=𝐗. Hence, in the (x1,x2) plane, the initial square is the same shape as the unit square in the (X1,X2) plane. We can use Maple to find out the values of x1 and x2 after the deformation 𝐮.

  with(linalg):</code>
  X := array(1..3): x := array(1..3): u = array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): e3 = array(1..3,[0,0,1]):
  ua := evalm(k*X[2]*e1 + k*X[1]*e2):
  ub := evalm(-k*X[2]*e1 + k*X[1]*e2);
  uc := evalm(k*X[1]^2*e2);
𝑢𝑎:=[kX2,kX1,0]
𝑢𝑏:=[kX2,kX1,0]
𝑢𝑐:=[0,kX12,0]
  xa := evalm(ua + X);
  xb := evalm(ub + X);
  xc := evalm(uc + X);</code>
𝑥𝑎:=[kX2+X1,kX1+X2,X3]
𝑥𝑏:=[kX2+X1,kX1+X2,X3]
𝑥𝑐:=[X1,kX12+X2,X3]

Plots of the deformed body are shown below

File:Kinematics ex3 fig.png
Deformed shapes

Template:Subpage navbar