Elasticity/Kinematics example 3

From testwiki
Jump to navigation Jump to search

Example 3

Given:

Unit square (X1,X2)[0,1] with displacement fields :

  1. ๐ฎ=κX2๐ž^1+κX1๐ž^2.
  2. ๐ฎ=κX2๐ž^1+κX1๐ž^2.
  3. ๐ฎ=κX12๐ž^2.

Sketch: Deformed configuration in x1,x2 plane.

Solution

The displacement ๐ฎ=๐ฑ๐—. Hence, ๐ฑ=๐ฎ+๐—. In the reference configuration, ๐ฎ=0 and ๐ฑ=๐—. Hence, in the (x1,x2) plane, the initial square is the same shape as the unit square in the (X1,X2) plane. We can use Maple to find out the values of x1 and x2 after the deformation ๐ฎ.

  with(linalg):</code>
  X := array(1..3): x := array(1..3): u = array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): e3 = array(1..3,[0,0,1]):
  ua := evalm(k*X[2]*e1 + k*X[1]*e2):
  ub := evalm(-k*X[2]*e1 + k*X[1]*e2);
  uc := evalm(k*X[1]^2*e2);
๐‘ข๐‘Ž:=[kX2,kX1,0]
๐‘ข๐‘:=[kX2,kX1,0]
๐‘ข๐‘:=[0,kX12,0]
  xa := evalm(ua + X);
  xb := evalm(ub + X);
  xc := evalm(uc + X);</code>
๐‘ฅ๐‘Ž:=[kX2+X1,kX1+X2,X3]
๐‘ฅ๐‘:=[kX2+X1,kX1+X2,X3]
๐‘ฅ๐‘:=[X1,kX12+X2,X3]

Plots of the deformed body are shown below

File:Kinematics ex3 fig.png
Deformed shapes

Template:Subpage navbar