Elasticity/Kinematics example 4: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Dave Braunschweig
 
(No difference)

Latest revision as of 02:38, 5 October 2021

Example 4

Given:

Displacement field 𝐮=κX2𝐞^1+κX1𝐞^2.

Find:

  1. The Lagrangian Green strain tensor 𝑬.
  2. The infinitesimal strain tensor ε.
  3. The infintesimal rotation tensor ω.
  4. The infinitesimal rotation vector θ.
  5. The exact longitudinal strain in the reference material direction 𝐞1.
  6. The approximate longitudinal strain in the direction 𝐞1 based on the infinitesimal strain tensor ε.

Solution

The Maple output of the computations are shown below:

  with(linalg): with(LinearAlgebra): 
  X := array(1..3): x := array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): 
  e3 := array(1..3,[0,0,1]):
  u := evalm(k*X[2]*e1 + k*X[1]*e2);
u:=[kX2,kX1,0]
  x := evalm(u + X);
x:=[kX2+X1,kX1+X2,X3]
  F := linalg[matrix](3,3):
  for i from 1 to 3 do
    for j from 1 to 3 do
      F[i,j] := diff(x[i],X[j]);
    end do;
  end do;
  evalm(F);
F:=[1k0k10001]
  Id := IdentityMatrix(3): C := evalm(transpose(F)&*F); 
  E := evalm((1/2)*(C - Id));
C:=[1+k22k02k1+k20001]
E:=[k22k0[2ex]kk220[2ex]000]
  gradu := linalg[matrix](3,3):
  for i from 1 to 3 do
    for j from 1 to 3 do
      gradu[i,j] := diff(u[i],X[j]);
    end do;
  end do;
  evalm(gradu);
gradu:=[0k0k00000]
  epsilon := evalm((1/2)*(gradu + transpose(gradu)));
ε:=[0k0k00000]
  omega := evalm((1/2)*(gradu - transpose(gradu)));
ω:=[000000000]
  stretch1 :=  sqrt(evalm(evalm(e1&*C)&*transpose(e1))[1,1]):
  longStrain1 := stretch1 - 1;
𝑠𝑡𝑟𝑒𝑡𝑐1:=1+k2
𝑙𝑜𝑛𝑔𝑆𝑡𝑟𝑎𝑖𝑛1:=1+k21
  approxLongStrain1 := evalm(evalm(e1&*epsilon)&*transpose(e1))[1,1];
𝑎𝑝𝑝𝑟𝑜𝑥𝐿𝑜𝑛𝑔𝑆𝑡𝑟𝑎𝑖𝑛1:=0

The geometrical difference between the large strain and small strain cases can be observed by looking at the figures from the previous examples.

Template:Subpage navbar