Elasticity/Kinematics example 4

From testwiki
Jump to navigation Jump to search

Example 4

Given:

Displacement field ๐ฎ=κX2๐ž^1+κX1๐ž^2.

Find:

  1. The Lagrangian Green strain tensor ๐‘ฌ.
  2. The infinitesimal strain tensor ε.
  3. The infintesimal rotation tensor ω.
  4. The infinitesimal rotation vector θ.
  5. The exact longitudinal strain in the reference material direction ๐ž1.
  6. The approximate longitudinal strain in the direction ๐ž1 based on the infinitesimal strain tensor ε.

Solution

The Maple output of the computations are shown below:

  with(linalg): with(LinearAlgebra): 
  X := array(1..3): x := array(1..3):
  e1 := array(1..3,[1,0,0]): 
  e2 := array(1..3,[0,1,0]): 
  e3 := array(1..3,[0,0,1]):
  u := evalm(k*X[2]*e1 + k*X[1]*e2);
u:=[kX2,kX1,0]
  x := evalm(u + X);
x:=[kX2+X1,kX1+X2,X3]
  F := linalg[matrix](3,3):
  for i from 1 to 3 do
    for j from 1 to 3 do
      F[i,j] := diff(x[i],X[j]);
    end do;
  end do;
  evalm(F);
F:=[1k0k10001]
  Id := IdentityMatrix(3): C := evalm(transpose(F)&*F); 
  E := evalm((1/2)*(C - Id));
C:=[1+k22k02k1+k20001]
E:=[k22k0[2ex]kk220[2ex]000]
  gradu := linalg[matrix](3,3):
  for i from 1 to 3 do
    for j from 1 to 3 do
      gradu[i,j] := diff(u[i],X[j]);
    end do;
  end do;
  evalm(gradu);
gradu:=[0k0k00000]
  epsilon := evalm((1/2)*(gradu + transpose(gradu)));
ε:=[0k0k00000]
  omega := evalm((1/2)*(gradu - transpose(gradu)));
ω:=[000000000]
  stretch1 :=  sqrt(evalm(evalm(e1&*C)&*transpose(e1))[1,1]):
  longStrain1 := stretch1 - 1;
๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ก๐‘โ„Ž1:=1+k2
๐‘™๐‘œ๐‘›๐‘”๐‘†๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›1:=1+k21
  approxLongStrain1 := evalm(evalm(e1&*epsilon)&*transpose(e1))[1,1];
๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘ฅ๐ฟ๐‘œ๐‘›๐‘”๐‘†๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›1:=0

The geometrical difference between the large strain and small strain cases can be observed by looking at the figures from the previous examples.

Template:Subpage navbar