Elasticity/Equilibrium example 2: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Dave Braunschweig
 
(No difference)

Latest revision as of 02:38, 5 October 2021

Example 2

Given: The displacement equation of equilibrium for an isotropic inhomogeneous linear elastic material can be written as

(𝐂:𝐮)+𝐛=0

where

𝐂=λ𝟏(2)𝟏(2)+2μ𝟏(4s)

and λ(𝐱) and μ(𝐱) are the Lamé moduli.

Show:

Show that the displacement equation of equilibrium can be expressed as

μ(𝐮)+(λ+μ)(𝐮)+(𝐮+𝐮T)μ+(𝐮)λ+𝐛=0

Solution

The skew part of the tensor 𝐮 does not affect the stress because it leads to a rigid displacement field. Therefore, the displacement equation of equilibrium may be written as

[𝐂:symm(𝐮)]+𝐛=0

where

symm(𝐮)=12(𝐮+𝐮T)

In index notataion,

symm(𝐮)=εεkl=12(uk,l+ul,k)

and

𝐂Cijkl=λδijδkl+μ(δikδjl+δilδjk)

Therefore,

𝐂:symm(𝐮)Cijklεkl=λδijδklεkl+μδikδjlεkl+μδilδjkεkl=λεmmδij+μεij+μεij=λεmmδij+2μεijλ(trε)𝟏+2με

Now,

trεεmm=12(um,m+um,m)=um,m𝐮

Hence,

𝐂:symm(𝐮)=λ(𝐮)𝟏+μ(𝐮+𝐮T)

Taking the divergence,

[𝐂:symm(𝐮)]=[λ(𝐮)𝟏+μ(𝐮+𝐮T)]=[λ(𝐮)𝟏]+(μ𝐮)+(μ𝐮T)

Recall that

ϕ=ϕ,j𝐯=vi,j𝐯=vj,j𝐓=Tij,j

Therefore,

[λ(𝐮)𝟏](λuk,kδij),j=λ,iuk,k+λuk,kiλ(𝐮)+λ(𝐮)
(μ𝐮)(μui,j),j=μ,jui,j+μui,jjμ𝐮+μ(𝐮)
(μ𝐮T)(μuj,i),j=μ,juj,i+μuj,ijμ𝐮T+μ(𝐮)

Hence,

[𝐂:symm(𝐮)]=λ(𝐮)+λ(𝐮)+μ𝐮+μ(𝐮)+μ𝐮T+μ(𝐮)=μ(𝐮)+(λ+μ)(𝐮)+μ(𝐮+𝐮T)+λ(𝐮)

Therefore, the displacement equation of equilibrium can be expressed as required, i.e,

μ(𝐮)+(λ+μ)(𝐮)+(𝐮+𝐮T)μ+(𝐮)λ+𝐛=0

Template:Subpage navbar