Elasticity/Equilibrium example 2

From testwiki
Jump to navigation Jump to search

Example 2

Given: The displacement equation of equilibrium for an isotropic inhomogeneous linear elastic material can be written as

(๐‚:๐ฎ)+๐›=0

where

๐‚=λ๐Ÿ(2)๐Ÿ(2)+2μ๐Ÿ(4s)

and λ(๐ฑ) and μ(๐ฑ) are the Lamรฉ moduli.

Show:

Show that the displacement equation of equilibrium can be expressed as

μ(๐ฎ)+(λ+μ)(๐ฎ)+(๐ฎ+๐ฎT)μ+(๐ฎ)λ+๐›=0

Solution

The skew part of the tensor ๐ฎ does not affect the stress because it leads to a rigid displacement field. Therefore, the displacement equation of equilibrium may be written as

[๐‚:symm(๐ฎ)]+๐›=0

where

symm(๐ฎ)=12(๐ฎ+๐ฎT)

In index notataion,

symm(๐ฎ)=εεkl=12(uk,l+ul,k)

and

๐‚Cijkl=λδijδkl+μ(δikδjl+δilδjk)

Therefore,

๐‚:symm(๐ฎ)Cijklεkl=λδijδklεkl+μδikδjlεkl+μδilδjkεkl=λεmmδij+μεij+μεij=λεmmδij+2μεijλ(trε)๐Ÿ+2με

Now,

trεεmm=12(um,m+um,m)=um,m๐ฎ

Hence,

๐‚:symm(๐ฎ)=λ(๐ฎ)๐Ÿ+μ(๐ฎ+๐ฎT)

Taking the divergence,

[๐‚:symm(๐ฎ)]=[λ(๐ฎ)๐Ÿ+μ(๐ฎ+๐ฎT)]=[λ(๐ฎ)๐Ÿ]+(μ๐ฎ)+(μ๐ฎT)

Recall that

ϕ=ϕ,j๐ฏ=vi,j๐ฏ=vj,j๐“=Tij,j

Therefore,

[λ(๐ฎ)๐Ÿ](λuk,kδij),j=λ,iuk,k+λuk,kiλ(๐ฎ)+λ(๐ฎ)
(μ๐ฎ)(μui,j),j=μ,jui,j+μui,jjμ๐ฎ+μ(๐ฎ)
(μ๐ฎT)(μuj,i),j=μ,juj,i+μuj,ijμ๐ฎT+μ(๐ฎ)

Hence,

[๐‚:symm(๐ฎ)]=λ(๐ฎ)+λ(๐ฎ)+μ๐ฎ+μ(๐ฎ)+μ๐ฎT+μ(๐ฎ)=μ(๐ฎ)+(λ+μ)(๐ฎ)+μ(๐ฎ+๐ฎT)+λ(๐ฎ)

Therefore, the displacement equation of equilibrium can be expressed as required, i.e,

μ(๐ฎ)+(λ+μ)(๐ฎ)+(๐ฎ+๐ฎT)μ+(๐ฎ)λ+๐›=0

Template:Subpage navbar