Nonlinear finite elements/Homework 11/Solutions/Problem 1/Part 6: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>MaintenanceBot
 
(No difference)

Latest revision as of 03:17, 14 March 2018

Problem 1: Part 6: Continuum elastic-plastic tangent modulus

The continuum elastic-plastic tangent modulus is defined by the following relation

σ˙=𝖢ep:ε˙.

Derive an expression for the elastic plastic tangent modulus using the results you have derived in the previous parts.

The stress rate is given by

σ˙=𝖢:(ε˙γ˙fσ).

From the previous part

γ˙=fσ:𝖢:ε˙fσ:𝖢:fσ23fαεp:fσεpχρCpfTσ:fσ.

Plug in expression for stress rate to get

σ˙=𝖢:(ε˙fσ:𝖢:ε˙fσ:𝖢:fσ23fαεp:fσεpχρCpfTσ:fσfσ)=𝖢:ε˙fσ:𝖢:ε˙fσ:𝖢:fσ23fαεp:fσεpχρCpfTσ:fσ𝖢:fσ

We have to express the above in the form

σ˙=𝖢ep:ε˙σ˙ij=Cijklepε˙kl.

Since the denominator is a scalar, we don't have to worry about it for this calculation. In that case we can write

σ˙=𝖢:ε˙(fσ:𝖢:ε˙denom.)𝖢:fσ

In index notation, we can write

σ˙ij=Cijklε˙klfpqσCpqrsε˙rsdenom.Cijklfklσ

Let us manipulate the numerator of the second term above so that we get what we need. Thus

fpqσCpqrsε˙rsCijklfklσ=(Cpqrsfpqσ)(Cijklfklσ)ε˙rs=(Crspqfpqσ)(Cijklfklσ)ε˙rsMajor symmetry of𝖢Cpqrs=Crspq=(Cijklfklσ)(Crspqfpqσ)ε˙rsAijBrsε˙rsMijrsε˙rs=𝖬:ε˙.

In the above

Mijrs=AijBrs𝖬=𝑨𝑩

and

Aij=Cijklfklσ𝑨=𝖢:fσBrs=Crspqfpqσ𝑩=𝖢:fσ

Therefore,

𝖬=(𝖢:fσ)(𝖢:fσ).

This gives us

σ˙=𝖢:ε˙((𝖢:fσ)(𝖢:fσ)denom.):ε˙

or,

σ˙=[𝖢((𝖢:fσ)(𝖢:fσ)denom.)]:ε˙.

Hence

𝖢ep=𝖢((𝖢:fσ)(𝖢:fσ)denom.).

The continuum elastic-plastic tangent modulus is therefore

𝖢ep=𝖢((𝖢:fσ)(𝖢:fσ)fσ:𝖢:fσ23fαεp:fσεpχρCpfTσ:fσ).

Template:Subpage navbar