Nonlinear finite elements/Homework 11/Solutions/Problem 1/Part 6

From testwiki
Jump to navigation Jump to search

Problem 1: Part 6: Continuum elastic-plastic tangent modulus

The continuum elastic-plastic tangent modulus is defined by the following relation

σΛ™=𝖒ep:εΛ™.

Derive an expression for the elastic plastic tangent modulus using the results you have derived in the previous parts.

The stress rate is given by

σΛ™=𝖒:(εΛ™γΛ™fσ).

From the previous part

γΛ™=fσ:𝖒:εΛ™fσ:𝖒:fσ23fαεp:fσεpχρCpfTσ:fσ.

Plug in expression for stress rate to get

σΛ™=𝖒:(εΛ™fσ:𝖒:εΛ™fσ:𝖒:fσ23fαεp:fσεpχρCpfTσ:fσfσ)=𝖒:εΛ™fσ:𝖒:εΛ™fσ:𝖒:fσ23fαεp:fσεpχρCpfTσ:fσ𝖒:fσ

We have to express the above in the form

σΛ™=𝖒ep:εΛ™σΛ™ij=CijklepεΛ™kl.

Since the denominator is a scalar, we don't have to worry about it for this calculation. In that case we can write

σΛ™=𝖒:εΛ™(fσ:𝖒:εΛ™denom.)𝖒:fσ

In index notation, we can write

σΛ™ij=CijklεΛ™klfpqσCpqrsεΛ™rsdenom.Cijklfklσ

Let us manipulate the numerator of the second term above so that we get what we need. Thus

fpqσCpqrsεΛ™rsCijklfklσ=(Cpqrsfpqσ)(Cijklfklσ)εΛ™rs=(Crspqfpqσ)(Cijklfklσ)εΛ™rsMajor symmetry of𝖒Cpqrs=Crspq=(Cijklfklσ)(Crspqfpqσ)εΛ™rsAijBrsεΛ™rsMijrsεΛ™rs=𝖬:εΛ™.

In the above

Mijrs=AijBrs𝖬=𝑨𝑩

and

Aij=Cijklfklσ𝑨=𝖒:fσBrs=Crspqfpqσ𝑩=𝖒:fσ

Therefore,

𝖬=(𝖒:fσ)(𝖒:fσ).

This gives us

σΛ™=𝖒:εΛ™((𝖒:fσ)(𝖒:fσ)denom.):εΛ™

or,

σΛ™=[𝖒((𝖒:fσ)(𝖒:fσ)denom.)]:εΛ™.

Hence

𝖒ep=𝖒((𝖒:fσ)(𝖒:fσ)denom.).

The continuum elastic-plastic tangent modulus is therefore

𝖒ep=𝖒((𝖒:fσ)(𝖒:fσ)fσ:𝖒:fσ23fαεp:fσεpχρCpfTσ:fσ).

Template:Subpage navbar