Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 12: Difference between revisions
Jump to navigation
Jump to search
imported>MaintenanceBot |
(No difference)
|
Latest revision as of 04:31, 3 June 2018
Problem 1: Part 12
The global base vectors are
Therefore, the rotation matrix is
Therefore, the components of the rate of deformation tensor with respect to the laminar coordinate system are
The Maple script used to compute the above is shown below.
> #
> # Compute rate of deformation in laminar system
> #
> # Set up global base vectors
> #
> ex := vector([1,0,0]);
> ey := vector([0,1,0]);
> ez := vector([0,0,1]);
> #
> # Set up rotation matrix
> #
> ex_ehatx := dotprod(ex, ehat_x);
> ex_ehaty := dotprod(ex, ehat_y);
> ex_ehatz := dotprod(ex, ehat_z);
> ey_ehatx := dotprod(ey, ehat_x);
> ey_ehaty := dotprod(ey, ehat_y);
> ey_ehatz := dotprod(ey, ehat_z);
> ez_ehatx := dotprod(ez, ehat_x);
> ez_ehaty := dotprod(ez, ehat_y);
> ez_ehatz := dotprod(ez, ehat_z);
> Rlam := linalg[matrix](2,2,[ex_ehatx, ex_ehaty,
> ey_ehatx, ey_ehaty]);
> RlamT := transpose(Rlam);
> #
> # Compute rate of deformation in laminar system
> #
> Dlam := evalm(RlamT&*DefRate&*Rlam);