Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 12

From testwiki
Jump to navigation Jump to search

Problem 1: Part 12

Template:Font

The global base vectors are

𝐞x=[10];𝐞y=[01].

Therefore, the rotation matrix is

𝐑lam=[𝐞x𝐞x^𝐞x𝐞y^𝐞y𝐞x^𝐞y𝐞y^]=[0.70710.70710.70710.7071].

Therefore, the components of the rate of deformation tensor with respect to the laminar coordinate system are

𝐃lam=𝐑lamT𝐃𝐑lam=[2.48370.50.50].

The Maple script used to compute the above is shown below.

> #
> # Compute rate of deformation in laminar system
> #
> # Set up global base vectors
> #
> ex := vector([1,0,0]);
> ey := vector([0,1,0]);
> ez := vector([0,0,1]);
> #
> # Set up rotation matrix
> #
> ex_ehatx := dotprod(ex, ehat_x);
> ex_ehaty := dotprod(ex, ehat_y);
> ex_ehatz := dotprod(ex, ehat_z);
> ey_ehatx := dotprod(ey, ehat_x);
> ey_ehaty := dotprod(ey, ehat_y);
> ey_ehatz := dotprod(ey, ehat_z);
> ez_ehatx := dotprod(ez, ehat_x);
> ez_ehaty := dotprod(ez, ehat_y);
> ez_ehatz := dotprod(ez, ehat_z);
> Rlam := linalg[matrix](2,2,[ex_ehatx, ex_ehaty,
> ey_ehatx, ey_ehaty]);
> RlamT := transpose(Rlam);
> #
> # Compute rate of deformation in laminar system
> #
> Dlam := evalm(RlamT&*DefRate&*Rlam);

Template:Subpage navbar