Continuum mechanics/Stress-strain relation for thermoelasticity: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>MaintenanceBot
m Subpage navbar
 
(No difference)

Latest revision as of 22:31, 25 July 2017

Relation between Cauchy stress and Green strain

Show that, for thermoelastic materials, the Cauchy stress can be expressed in terms of the Green strain as

σ=ρ𝑭e𝑬𝑭T.

Proof:

Recall that the Cauchy stress is given by

σ=ρe𝑭𝑭Tσij=ρeFikFkjT=ρeFikFjk.

The Green strain 𝑬=𝑬(𝑭)=𝑬(𝑼) and e=e(𝑭,η)=e(𝑼,η). Hence, using the chain rule,

e𝑭=e𝑬:𝑬𝑭eFik=eElmElmFik.

Now,

𝑬=12(𝑭T𝑭1)Elm=12(FlpTFpmδlm)=12(FplFpmδlm).

Taking the derivative with respect to 𝑭, we get

𝑬𝑭=12(𝑭T𝑭𝑭+𝑭T𝑭𝑭)ElmFik=12(FplFikFpm+FplFpmFik).

Therefore,

σ=12ρ[e𝑬:(𝑭T𝑭𝑭+𝑭T𝑭𝑭)]𝑭Tσij=12ρ[eElm(FplFikFpm+FplFpmFik)]Fjk.

Recall,

𝑨𝑨AijAkl=δikδjland𝑨T𝑨AjiAkl=δjkδil.

Therefore,

σij=12ρ[eElm(δpiδlkFpm+Fplδpiδmk)]Fjk=12ρ[eElm(δlkFim+Filδmk)]Fjk

or,

σij=12ρ[eEkmFim+eElkFil]Fjkσ=12ρ[𝑭(e𝑬)T+𝑭e𝑬]𝑭T

or,

σ=12ρ𝑭[(e𝑬)T+e𝑬]𝑭T.

From the symmetry of the Cauchy stress, we have

σ=(𝑭𝑨)𝑭TandσT=𝑭(𝑭𝑨)T=𝑭𝑨T𝑭Tandσ=σT𝑨=𝑨T.

Therefore,

e𝑬=(e𝑬)T

and we get

σ=ρ𝑭e𝑬𝑭T.


Template:Subpage navbar